Skip to main content

Two-Velocities Hybrid RANS-LES of a Trailing Edge Flow

  • Conference paper

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 14))

Abstract

The flow around a trailing edge is computed with a new hybrid method designed to split the influences of the averaged and instantaneous velocity fields. The model is first tested on channel flows at different Reynolds numbers and coarse meshes giving good predictions of mean velocities and stresses. On the trailing edge flow the predictions of the hybrid model are compared with those using DES-SST on the same coarse mesh. The results of the hybrid model are close to the reference fine LES in terms of mean velocity and turbulent content.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K Abe. A hybrid LES RANS approach using an anisotropy-resolving algebraic turbulence model. International Journal of Heat and Fluid Flow, 26:204–222, 2005.

    Article  Google Scholar 

  2. F. Archambeau, N. Mechitoua, and M. Sakiz. A finite volume method for the computation of turbulent incompressible flows — industrial applications. International Journal on Finite Volumes, 1(1):1–62, 2004.

    MathSciNet  Google Scholar 

  3. J.S. Baggett. On the feasibility of merging LES with RANS for the near-wall regions of attached turbulent flows. In Annual Research Briefs, pp. 267–276. Center for turbulence research, Stanford, CA, 1998.

    Google Scholar 

  4. E. Balaras, C. Benocci, and U. Piomelli. Two-layer approximate boundary conditions for large eddy simulations. AIAA Journal, 34:1111–1119, 1996.

    Article  MATH  ADS  Google Scholar 

  5. J.A. Businger, J.C. Wyngaard, Y. Izumi, and E.E. Bradley. Flux-profile relationships in the atmospheric surface layer. Journal of Atmospheric Science, 28:181–189, 1971.

    Article  ADS  Google Scholar 

  6. D. Chapman. Computational aerodynamics development and outlook. AIAA Journal, 17:1293–1313, 1979.

    Article  MATH  ADS  Google Scholar 

  7. L. Davidson and S. Dahlström. Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number. International Journal of Computational Fluid Dynamics, 19:415–427, 2005.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. L. Davidson and S.-H. Peng. Hybrid RANS-LES: A one equation sgs model combined with a k—ω model for predicting recirculating flows. International Journal of Numerical Methods in Fluids, 43:1003–1018, 2003.

    Article  MATH  ADS  Google Scholar 

  9. P.A. Durbin. A reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, 249:465–498, 1993.

    Article  ADS  Google Scholar 

  10. G. Grotzbach and U. Schumann. Direct numerical simulation of turbulence velocity-pressure, and temperature fields in channel flows. In Symposium on Turbulent Shear Flow, pp. 18–20, 1977.

    Google Scholar 

  11. F. Hamba. An attempt to combine large eddy simulation with the k —ε model in a channel flow calculation. Theoretical and Computational Fluid Dynamics, 14:323–336, 2001.

    Article  MATH  ADS  Google Scholar 

  12. F. Hamba. A hybrid RANS LES simulation of turbulent flows. Theoretical and Computational Fluid Dynamics, 16:387–403, 2003.

    Article  MATH  ADS  Google Scholar 

  13. D. Laurence, J.C. Uribe, and S. Utyuzhnikov. A robust formulation of the v2-f model. Flow, Turbulence and Combustion, 73:169–185, 2004.

    Article  MATH  Google Scholar 

  14. T. Lund, X. Wu, and D. Squires. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics, 140:233–258, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. F. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the SST model. In K. Hanjalic, Y. Nagano, and M. Tummers, eds., Turbulence, Heat and Mass Transfer 4, 4:625–632, 2003.

    Google Scholar 

  16. F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994.

    Article  ADS  Google Scholar 

  17. P. Moin and J. Kim. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 118:341–377, 1982.

    Article  MATH  ADS  Google Scholar 

  18. F. Nicoud, J.S. Baggett, P. Moin, and W. Cabot. Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation. Physics of Fluids, 13:2968–2984, 2001.

    Article  ADS  Google Scholar 

  19. N.V. Nikkitin, F Nicoud, B. Wasistho, K.D. Squires, and P. Spalart. An approach to wall modelling in large eddy simulations. Physics of Fluids, 10:1629–1632, 2000.

    Article  ADS  Google Scholar 

  20. U. Piomelli and E. Balaras. Wall-layer models of large eddy simulation. Annual Review of Fluid Mechanics, 34:349–374, 2002.

    Article  MathSciNet  ADS  Google Scholar 

  21. U. Piomelli, E. Balaras, E. Pasinato, K.D. Squire, and P. Spalart. The inner-outer later interface in large eddy simulation with wall layer models. International Journal of Heat and Fluid Flow, 23:538–550, 2003.

    Article  Google Scholar 

  22. U. Schumann. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of Computational Physics, 18:376–404, 1975.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J. Smagorinsky. General circulation experiments with the primitive equations: I the basic equations. Monthly Weather Review, 91:99–164, 1963.

    Article  ADS  Google Scholar 

  24. P. Spalart, W. Jou, M. Strelets, and S. Allmaras. Comments of feasibility of les for wings, and on a hybrid RANS/LES approach. In International Conference on DNS/LES, Aug. 4–8, 1997, Ruston, LA, 1997.

    Google Scholar 

  25. C.G. Speziale. Turbulence modeling for time-dependant RANS and VLES: A review. AIAA Journal, 26:179–184, 1998.

    Google Scholar 

  26. P. Sullivan, J. McWilliams, and C. Moeng. A subgrid-scale model for large eddy simulation of planetary boundary layer. Boundary Layer Methodology, 71:247–276, 1994.

    Article  ADS  Google Scholar 

  27. L. Temmerman and M. Leschziner. A priori studies of near wall RANS model whithin a hybrid LES/RANS scheme. In Rodi W. and Fueyo N, editors, Engineering Turbulence Modelling and Experiments, 5:317–327, 2002.

    Google Scholar 

  28. L. Temmerman, M. Hadziabdic, M. Leschziner, and K. Hanjalic. A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. International Journal of Heat and Fluid Flow, 26:173–190, 2005.

    Article  Google Scholar 

  29. F. Tessicini, L. Temmerman, and M. A. Leschziner. Approximate near-wall treatments based on zonal and hybrid RANS-LES methods for LES at high Reynolds numbers. International Journal of Heat and Fluid Flow, 27:789–799, 2006.

    Article  Google Scholar 

  30. A. Travin, M. Shur, M. Strelets, and P. Spalart. Detached-eddy simulation past a circular cylinder. Flow Turbulence and Combustion, 63:393–313, 1999.

    Google Scholar 

  31. P. Tucker and L. Davidson. Zonal kl based large eddy simulations. Computational Fluid Dynamics, 33:267–287, 2004.

    MATH  Google Scholar 

  32. M. Wang. Progress in les of trailing-edge turbulence and aeroacoustics. In Annual Research Briefs. Center for turbulence research, Stanford, CA, 1997.

    Google Scholar 

  33. M. Wang and P. Moin. Computation of trailing-edge flow and noise using large-eddy simulation. AIAA Journal, 38:2201–2209, 2000.

    Article  ADS  Google Scholar 

  34. M. Wang and P. Moin. Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Physics of Fluids, 14:2043–2051, 2002.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was financed by the DESider project (Detached Eddy Simulation for Industrial Aerodynamics) which is a collaboration between Alenia, ANSYS-AEA, Chalmers University, cnrs-Lille, Dassault, DLR, EADS Military Aircraft, EUROCOPTER Germany, EDF, FOI-FFA, IMFT, Imperial College London, NLR, NTS, NUMECA, ONERA, TU Berlin, and UMIST. The project is funded by the European Community represented by the CEC, Research Directorate-General, in the 6th Framework Programme, under Contract No. AST3-CT-2003-502842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Uribe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Uribe, J.C., Jarrin, N., Prosser, R., Laurence, D. (2009). Two-Velocities Hybrid RANS-LES of a Trailing Edge Flow. In: Braza, M., Hourigan, K. (eds) IUTAM Symposium on Unsteady Separated Flows and their Control. IUTAM Bookseries, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9898-7_6

Download citation

Publish with us

Policies and ethics