Skip to main content

Electromagnetic Control of Separation at Hydrofoils

  • Conference paper
IUTAM Symposium on Unsteady Separated Flows and their Control

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 14))

Abstract

Lorentz forces originating from surface-mounted actuators of permanent magnets and electrodes in weakly conducting fluids like seawater provide a convenient tool for separation control at hydrofoils. A well-known actuator design is considered which creates a mainly streamwise Lorentz force that is exponentially decaying in wall-normal direction. Separation control by steady forcing at the suction side and by oscillatory forcing near the leading edge of a symmetric foil is investigated numerically, mostly in the post-stall regime. Direct numerical simulations are performed in the laminar flow regime in order to reveal basic control phenomena as well as simulations using turbulence modelling at higher Reynolds numbers which are closer to possible naval applications. Strong enough steady control s capable of suppressing separation completely, and the scaling behaviour of the maximum lift gain \(\Delta C_L^{max}\) in the turbulent regime is found to agree nicely with experimental results. As oscillatory forcing always has to compete with natural shedding, lock-in behavior is detected, and lift-optimum control at strong control is found in a frequency band around the natural shedding frequency. In terms of the momentum coefficient describing the control effort, appropriate excitation allows for a more effective lift control than steady forcing for small lift gains; for large lift enhancement the effort seems to approach the level of steady control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Gad-el-Hak, Flow Control, Cambridge University Press, Cambridge, 2000.

    Book  MATH  Google Scholar 

  2. D. Greenblatt, I.J. Wygnanski, Prog. Aero. Sci. 36 (2000) 487–545.

    Article  Google Scholar 

  3. J.-Z. Wu, X.-Y. Lu, A.G. Denny, M. Fan and J.-M. Wu, J. Fluid Mech. 371 (1998) 21–58.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. E.L. Resler & W.R. Sears, J. Aero. Sci. 25 (1958) 235–245.

    MathSciNet  Google Scholar 

  5. A. Gailitis, O. Lielausis, Appl. Magnetohydrodyn. Rep. Riga Inst. Phys. 12 (1961) 143–146.

    Google Scholar 

  6. T. Albrecht, R. Grundmann, G. Mutschke, G. Gerbeth, Phys. Fluids 18 (2006) 098103.

    Article  MathSciNet  ADS  Google Scholar 

  7. Y. Du and G.E. Karniadakis, Science 288 (2000) 1230–1234.

    Article  ADS  Google Scholar 

  8. Y. Du, V. Symeonidis and G.E. Karniadakis, J. Fluid Mech. 457 (2002) 1–34.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. V. Shatrov, G. Gerbeth: Phys. Fluids 19 (2007) 035109

    Article  ADS  Google Scholar 

  10. O. Posdziech and R. Grundmann, Eur. J. Mech.-B/Fluids 20 (2001) 255–274.

    Article  MATH  Google Scholar 

  11. S.-J. Kim and C.M. Lee, Exp. Fluids 28 (2000) 252–260.

    Article  Google Scholar 

  12. T. Weier, G. Gerbeth, G. Mutschke, O. Lielausis and G. Lammers, Flow, Turbul. Combust. 71 (2003) 5–17.

    Article  MATH  Google Scholar 

  13. T. Weier and G. Gerbeth, Eur. J. Mech./B - Fluids 23 (2004) 835–849.

    Article  MATH  ADS  Google Scholar 

  14. G. Mutschke, G. Gerbeth, T. Albrecht, R. Grundmann, Eur. J. Mech./B — Fluids 25 (2006) 137–152.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. D. Greenblatt, I. Wygnanski, J. Aircraft 38 (2001) 190–192.

    Article  Google Scholar 

  16. Y. Hoarau, M. Braza, Y. Ventikos, D. Faghani, G. Tzabiras, J. Fluid Mech. 496 (2003) 63–72.

    Article  MATH  ADS  Google Scholar 

  17. T. Weier, G. Gerbeth, G. Mutschke, E. Platacis and O. Lielausis, Exp. Therm. Fluid Sci. 16 (1998) 84–91.

    Article  Google Scholar 

  18. G.E. Karniadakis and G.S. Triantafyllou, J. Fluid Mech. 199 (1989) 441–469.

    Article  MATH  ADS  Google Scholar 

  19. S. Choi, H. Choi and S. Kang, Phys. Fluids 14 no. 8 (2002) 2767–2777.

    Article  ADS  Google Scholar 

  20. P.T. Tokumaru and P.E. Dimotakis, J. Fluid Mech. 224 (1991) 77–90.

    Article  ADS  Google Scholar 

  21. R.D. Henderson and G.E. Karniadakis, J. Comp. Phys. 122 (1995) 191–217.

    Article  MATH  ADS  Google Scholar 

  22. FIDAP 8.0; Fluent Inc., 2002.

    Google Scholar 

  23. S. Mittal, J. Fluids Struct. 15 (2001) 291–326.

    Article  ADS  Google Scholar 

  24. A. Darabi and I. Wygnanski, J. Fluid Mech. 510 (2004) 105–129.

    Article  MATH  ADS  Google Scholar 

  25. Y.S. Chen, S.W. Kim, NASA CR 179204, 1987.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the code PRISM from G.E. Karniadakis group at Brown University and financial support from DFG in frame of Sonderforschungsbereich 609.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mutschke, G., Weier, T., Albrecht, T., Gerbeth, G., Grundmann, R. (2009). Electromagnetic Control of Separation at Hydrofoils. In: Braza, M., Hourigan, K. (eds) IUTAM Symposium on Unsteady Separated Flows and their Control. IUTAM Bookseries, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9898-7_49

Download citation

Publish with us

Policies and ethics