Advertisement

Large Eddy Simulation of a Supersonic Turbulent Boundary Layer at M = 2.25

  • A. Hadjadj
  • S. Dubos
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 14)

Abstract

This work deals with numerical simulation of a spatially-developing supersonic turbulent boundary layer at a free-stream Mach number of M = 2.25 and a Reynolds number of R = 5,000 with respect to free-stream quantities and momentum thickness at inflow. Since a shock-capturing scheme is used, a hybrid numerical scheme has been developed to reduce its dissipative properties. The issue of the generation of coherent turbulent boundary conditions is also addressed. A method originally developed by Lund, based on a rescaling technique, has been modified by adjusting the scaling coefficient to provide smooth transition between the inner and the outer parts of the boundary layer. This modification is essential for avoiding the drift previously observed in the mean streamwise velocity profile. The obtained results are analysed and discussed in terms of mean and turbulent quantities. Excellent agreement between LES, DNS and experimental data is obtained. The validity of the assumptions of the strong Reynolds analogy (SRA) is also addressed.

Keywords

Unsteady turbulent supersonic flows Large eddy simulation Turbulent boundary conditions Strong Reynolds analogy Shock-capturing schemes 

Notes

Acknowledgments

Part of this work has been carried out within the research activities of the ATAC group (Aérodynamique des Tuyères et Arrière-Corps) supported by CNES and ONERA. Computational facilities were provided by CNRS — IDRIS (Institut du Développement et des Ressources en Informatique Scientifique, Paris) and CRIHAN (Center de Resources Informatiques de HAute Normandie, Rouen).

References

  1. 1.
    Dubos S. (2005) Simulation des grandes échelles d'écoulements turbulents supersoniques, Ph.D. thesis, INSA of Rouen.Google Scholar
  2. 2.
    Jiang G. S. and Shu C. W. (1996) Efficient implementation of weighted ENO schemes, J. Comp. Phys. 126: 202–228.MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Shu C. W. and Osher S. (1988) Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comp. Phys. 77: 439–471.MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Pirozzoli S., Grasso F. and Gatski T. B. (2004) Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2:25, Phys. Fluids 16: 530–545.CrossRefADSGoogle Scholar
  5. 5.
    Lund T. S., Wu X. and Squires K. D. (1998) Generation of turbulent inflow data for spatially-developping boundary layer simulations, J. Comput. Phys. 140: 233–258.MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Deleuze L. (1995) Structure d'une couche limite turbulente soumise à une onde de choc incidente, Ph.D. thesis, Université Aix-Marseille II, France.Google Scholar
  7. 7.
    Guarini S., Moser R., Shariff K. and Wray A. (2000) Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5, J. Fluid Mech. 414: 1–33.MATHCrossRefADSGoogle Scholar
  8. 8.
    Laurent H. (1996) Turbulence d'une interaction onde de choc/couche limite sur une paroi plane adiabatique ou chauffée, Ph.D. thesis, Université Aix-Marseille II, France.Google Scholar
  9. 9.
    Spyropoulos E. T. and Blaisdell G. A. (1998) Large-eddy simulation of a spatially evolving supersonic turbulent boundary-layer flow, AIAA J. 36: 1983–1990.CrossRefADSGoogle Scholar
  10. 10.
    Sagaut P., Garnier E., Tromeur E., Larcheveque L. and Labourasse E. (2004) Turbulent inflow conditions for large-eddy simulation of compressible wall-bounded flows, AIAA J. 42: 469– 477.CrossRefADSGoogle Scholar
  11. 11.
    Stolz S. and Adams N. A. (2003) Large-eddy simulation of high-Reynolds number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique, Phys. Fluids 15: 2398–2412.CrossRefADSGoogle Scholar
  12. 12.
    Jimenéz J. and Moin P. (1991) The minimal flow unit in near-wall turbulence, J. Fluid Mech. 225: 213–240.MATHCrossRefADSGoogle Scholar
  13. 13.
    Urbin G. and Knight D. (1999) Compressible large eddy simulation using unstructured grid: supersonic boundary layer. Second AFOSR Conference on DNS/LES, Kluwer Academic Publishers, June 7–9 Rutgers University: 443–458.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institut National des Sciences Appliquées de RouenCORIA — Unité Mixte de Recherche C.N.R.S. 6614. Avenue de l'UniversitéFrance

Personalised recommendations