Skip to main content

Successive Steps of 2D and 3D Transition in the Flow Past a Rotating Cylinder at Moderate Reynolds Numbers

  • Conference paper
IUTAM Symposium on Unsteady Separated Flows and their Control

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 14))

The flow past a rotating circular cylinder, placed in a uniform stream, is investigated by means of 2D and 3D direct numerical simulations, using the finite-volume version of the code ICARE/IMFT. The flow transition is studied for Reynolds numbers from 40 to 500, and for rotation rates α (ratio of the angular and the free-stream velocities) up to 6. For a fixed Reynolds number, different flow patterns are observed as α increases: Von-Kármán vortex shedding for low rotation rates, suppression of the vortex shedding at higher α appearing of a second mode of instability for a high interval of α where only counter clockwise vortices are shedd, and steady state flow for very high rotation speeds where the rotation effects keep the vortex structure near the wall and inhibit detachment. Three dimensional computations are carried out showing that the secondary instability is attenuated under the rotation effect. The linear and non-linear growth of the 3D flow transition are quantified using the Ginzburg-Landau global oscillator model. The analysis of the coherent structures under the rotation effect is performed by the proper orthogonal decomposition, as well the pattern reconstruction using the first POD modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. A. Amsden and F. H. Harlow. The SMAC method: a numerical technique for calculating incompressible fluid flows. Los Alamos Scientific Laboratory Report. L.A. 4370, 1970.

    Google Scholar 

  2. H. M. Badr, M. Coutanceau, S. C. R. Dennis, and C. Ménard. Unsteady flow past a rotating circular cylinder at reynolds numbers 103 and 104. J. Fluid Mech., 220:459–484, 1990.

    Article  ADS  Google Scholar 

  3. H. M. Badr and S. C. R. Dennis. Time dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech., 158:447–488, 1985.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. G. Berkooz, P. Holmes, and J. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech., 25:539–575, 1993.

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Bouhadji and M. Braza. Compressibility effect on the 2d and 3d vortex structures in a transonic flow around a wing. ERCOFTAC Bull., 34:4–9, 1997.

    Google Scholar 

  6. M. Braza, P. Chassaing, and H. Ha-Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech., 165:79–130, 1986.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. C. C. Chang and R. L. Chern. Vortex shedding from an impulsively started rotating and translating circular cylinder. J. Fluid Mech., 233:265–298, 1991.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. K. A. Cliffe and S. J. Tavener. The effect of cylinder rotation and blockage ratio on the onset of the periodic flows. J. Fluid Mech., 501:125–133, 2004.

    Article  MATH  ADS  Google Scholar 

  9. M. Coutanceau and C. Ménard. Influence of the rotation on the near wake development behind an impulsively started circular cylinder. J. Fluid Mech., 158:399–446, 1985.

    Article  ADS  Google Scholar 

  10. F.H. Harlow and J.E. Welch. Numerical calculation of the time-dependent viscous incompressible flow of fluids with free surface. Phys. Fluids, 8:2182–2189, 1965.

    Article  ADS  MATH  Google Scholar 

  11. R.D. Henderson and D. Barkley. Secondary instability in the wake of a circular cylinder. Phys. Fluids, 8:1683–1685, 1996.

    Article  MATH  ADS  Google Scholar 

  12. C. Mathis, M. Provansal, and L. Boyer. Bénard-von kàrmàn instability: transient and forced regimes. J. Fluid Mech., 182:1–22, 1987.

    Article  MATH  ADS  Google Scholar 

  13. S. Mittal and B. Kumar. Flow past a rotating cylindre. J. Fluid Mech., 476:303–334, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. M. T. Nair, T. K. Sengupta, and U. S. Chauchan. Flow past rotating cylinders at high reynolds numbers using higher order upwiwnd scheme. Comput. Fluids, 27:47–70, 1998.

    Article  MATH  Google Scholar 

  15. D.W. Peaceman and J.R. Rachford. The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appli. Math., 3:28, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Persillon and M. Braza. Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional navier-stokes simulation. J. Fluid Mech., 365:23–88, 1998.

    Article  MATH  ADS  Google Scholar 

  17. L. Prandtl. Application of the “magnus effect” to the wind propulsion of ships. Die Naturwis-senschaft, 13:93–108, 1925. Trans. NACA-TM-367, june 1926.

    Article  ADS  Google Scholar 

  18. E. G. Reid. Tests of rotating cylinders. Technical Report NACA-TN-209, 1924.

    Google Scholar 

  19. D. Stojković, M. Breuer, and F. Durst. Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids, 14:3160–3178, 2002.

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Stojković, P.Schön, M. Breuer, and F. Durst. On the new vortex shedding mode past a rotating circular cylinder. Phys. Fluids, 8:1683–1685, 2003.

    Google Scholar 

  21. A. Thom. The pressure round a cylinder rotating in an air current. (ARC R. & M. 1082), 1926.

    Google Scholar 

  22. A. Thom. Experiments on the flow past a rotating cylinder. (ARC R. & M. 1410), 1931.

    Google Scholar 

Download references

Acknowledgments

This work has been carried out in the research group EMT2 (Ecoule-ments Mono-phasiques, Transitionnels et Turbulents) of the Institut de Mécanique des Fluides de Toulouse. We are grateful to D. Faghani and A. Barthet concerning their collaboration in the P.O.D. approach. Part of this work is carried out on the basis of CPU allocations of the national computer centres of France CINES, CALMIP and IDRIS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

El Akoury, R. et al. (2009). Successive Steps of 2D and 3D Transition in the Flow Past a Rotating Cylinder at Moderate Reynolds Numbers. In: Braza, M., Hourigan, K. (eds) IUTAM Symposium on Unsteady Separated Flows and their Control. IUTAM Bookseries, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9898-7_16

Download citation

Publish with us

Policies and ethics