Fulleranes pp 251-272 | Cite as

Topological Modeling of C60H36 Hydrides

  • Ottorino Ori
  • Franco Cataldo
  • Susana Iglesias-Groth
  • Ante Graovac
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 2)

Abstract

In recent literature, different C60H36 isomers have been proposed to interpret NMR experimental findings; this chapter ranks those fulleranes in terms of relative molecular stability using topological invariants computed on their chemical graphs. Our topological modeling exploits in fact Wiener index contributions from individual molecular sites and measures total graph topological efficiency. Moreover, it gives correct numbers of NMR resonance peaks and relative intensities. Comparisons with previous ab-initio predictions are presented together with some interesting original C60H18 and C60H36 isomers. Th-symmetric molecule appears a valid candidate for C60H36 fullerane.

Keywords

Enthalpy Cage Hexagonal Fullerene Hydride 

Notes

Acknowledgements

We wish to acknowledge ASI, the Italian Space Agency for the partial support of the present work under the contract n.I/015/07/0 (Studi di Esporazione del Sistema Solare).

References

  1. Balasubramanian K (2004) Chem Phys Lett 400:78–85CrossRefGoogle Scholar
  2. Bini R, Ebenhoch J, Fanti M, Fowler PW, Leach S, Orlandi G, Ruechardt Ch, Sandall JPB, Zerbetto F (1998) Chem Phys 232:75–94CrossRefGoogle Scholar
  3. Book LD, Scuseria GE (1994) J Phys Chem 98:4283–4286CrossRefGoogle Scholar
  4. Briggs JB, Montgomery M, Silva LL, Miller GP (2005) Org Lett 7:5553–5555CrossRefGoogle Scholar
  5. Cataldo F (2003) Fullerenes Nanot Carbon Nanostruct 11:295–316CrossRefGoogle Scholar
  6. Cataldo F, Iglesias-Groth S, Manchado A (2009) Month Not Roy Astronom Soc 400:291–298CrossRefGoogle Scholar
  7. Gakh AA, Romanovich AY, Bax A (2003) J Am Chem Soc 125:7902–7906CrossRefGoogle Scholar
  8. Iglesias-Groth S (2004) Astrophys J 608:L37–L40CrossRefGoogle Scholar
  9. Iglesias-Groth S (2006) Mon Not RoyAstronom Soc 368:1925–1930CrossRefGoogle Scholar
  10. Karpushenkava LS, Kabo GJ, Diky VV (2007) Fullerenes Nanot Carbon Nanostruct 15:227–247CrossRefGoogle Scholar
  11. Nossal J, Saini RK, Sadana AK, Bettinger HF, Alemany LB, Scuseria GE, Billups WE, Saunders M, Khong A, Weisemann R (2001) J Am Chem Soc 123:8482–8495CrossRefGoogle Scholar
  12. Ori O, D’Mello M (1993) Appl Phys A Solid Surf 56:35–39CrossRefGoogle Scholar
  13. Ori O, D’Mello M (1992) Chem Phys Lett 197:49–54CrossRefGoogle Scholar
  14. Ori O, Cataldo F, Graovac A (2009) Fullerenes Nanot Carbon Nanostruct 17:308–323CrossRefGoogle Scholar
  15. Palit DK, Mohan H, Mittal JP (1998) J Phys Chem A 102:4456–4461CrossRefGoogle Scholar
  16. Peera AA, Alemany LB, Billups WE (2004) Appl Phys A78:995–1000Google Scholar
  17. Schur DV, Zaginaichenko S, Veziroglu TN (2008) Int J Hydrogen Energy 33:3330–3345CrossRefGoogle Scholar
  18. Stoldt CR, Maboudian R, Carraro C (2001) Astrophys J 548:L225–L228CrossRefGoogle Scholar
  19. Taylor R (2006) Compt Rend Chimie 9:982–1000CrossRefGoogle Scholar
  20. Withers J, Loufty R, Lowe T (1997) Fullerene Sci Technol 5:1–4CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ottorino Ori
    • 1
  • Franco Cataldo
    • 1
    • 2
  • Susana Iglesias-Groth
    • 3
  • Ante Graovac
    • 4
    • 5
    • 6
  1. 1.Actinium Chemical ResearchRomeItaly
  2. 2.INAF, Osservatorio Astrofisico di CataniaCataniaItaly
  3. 3.Instituto de Astrofisica de CanariasLa LagunaSpain
  4. 4.IMC, University of DubrovnikDubrovnikCroatia
  5. 5.The “R. Bošković” InstituteZagrebCroatia
  6. 6.Faculty of ScienceUniversity of SplitSplitCroatia

Personalised recommendations