Skip to main content

Abstract

Cells undergo apoptotic events during development, tissue homeostasis or disease and are subsequently cleared by phagocytes, inducing changes in the immune response. Lymphocyte apoptosis is responsible for the homeostasis of immune cells and plays an essential role in the elimination of autoreactive lymphocytes. Apoptosis also modulates neutrophil life span, regulating the balance between their function as effectors of the immune system and the clearance of potentially harmful cells. Programmed mammalian red blood cells death, or eryptosis, is a special form of apoptosis that shows all features of apoptosis, except nuclear condensation. Similarly, platelets, small, anuclear cytoplasmic fragments, develop apoptotic events that regulates platelet life span. Apoptotic events, which are enhanced in mature megakaryocytes, the platelet precursors, have been proposed as a major force driving proplatelet formation and platelet release. In addition to apoptosis, platelets undergo apoptotic-like events, including the rapid and reversible activation of caspase 3, that are essential for platelet Ca2+ signalling and aggregation independently of programmed cell death. Finally elevated apoptosis and enhanced oxidative stress in peripheral blood cells, such as platelets and lymphocytes, have been proposed as a biomarker for Alzheimer disease. This chapter describes the physiological and pathological implications of apoptosis in blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acarin L, Villapol S, Faiz M et al. (2007) Caspase-3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation. Glia 55:954–965

    Article  PubMed  Google Scholar 

  • Ameisen JC, Capron A (1991) Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today 12:102–105

    Article  PubMed  CAS  Google Scholar 

  • Anand S, Verma H, Kumar L et al. (1995) Induction of apoptosis in chronic myelogenous leukemia lymphocytes by hydroxyurea and adriamycin. Cancer Lett 88:101–105

    Article  PubMed  CAS  Google Scholar 

  • Batey RG, Wang J (2002) Molecular pathogenesis of T lymphocyte-induced liver injury in alcoholic hepatitis. Front Biosci 7:1662–1675

    Article  Google Scholar 

  • Ben Amor N, Pariente JA, Salido GM et al. (2006a) Caspases 3 and 9 are translocated to the cytoskeleton and activated by thrombin in human platelets. Evidence for the involvement of PKC and the actin filament polymerization. Cell Signal 18:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Ben Amor N, Pariente JA, Salido GM et al. (2006b) Thrombin-induced caspases 3 and 9 translocation to the cytoskeleton is independent of changes in cytosolic calcium in human platelets. Blood Cells Mol Dis 36:392–401

    Article  CAS  Google Scholar 

  • Binet JL, Villeneuve B, van Rapenbusch R et al. (1968) Extracorporeal radiation of the blood by ultraviolet rays. Nouv Rev Fr Hematol 8:733–744

    PubMed  CAS  Google Scholar 

  • Bizzonero J (1882) Über einen formbestandtheil des blutes und dessen rolle bei der thrombose und der blutgerinnung. Virchow’s Arch Path Anat Physiol Klin Med 90:261–332

    Article  Google Scholar 

  • Blewitt RW, Abbott AC, Bird CC (1983) Mode of cell death induced in human lymphoid cells by high and low doses of glucocorticoid. Br J Cancer 47:477–486

    PubMed  CAS  Google Scholar 

  • Bochner BS, Schleimer RP (2001) Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev 179:5–15

    Article  PubMed  CAS  Google Scholar 

  • Boise LH, Gonzalez-Garcia M, Postema CE et al. (1993) Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608

    Article  PubMed  CAS  Google Scholar 

  • Bolitho P, Voskoboinik I, Trapani JA et al. (2007) Apoptosis induced by the lymphocyte effector molecule perforin. Curr Opin Immunol 19:339–347

    Article  PubMed  CAS  Google Scholar 

  • Bots M, Medema JP (2006) Granzymes at a glance. J Cell Sci 119:5011–5014

    Article  PubMed  CAS  Google Scholar 

  • Callus BA, Iacopetta BJ, Kühn LC et al. (1996) Effects of overexpression of the transferrin receptor on the rates of transferring recycling and uptake of non-transferrin-bound iron. Eur J Biochem 238:463–469

    Article  PubMed  CAS  Google Scholar 

  • Cicchetti G, Allen PG, Glogauer M (2002) Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. Crit Rev Oral Biol Med 13:220–228

    Article  PubMed  Google Scholar 

  • Choi KS, Song EK, Yim CY (2008) Cytokines secreted by IL-2-activated lymphocytes induce endogenous nitric oxide synthesis and apoptosis in macrophages. J Leukoc Biol doi: 10.1189/jlb.1007701

    Google Scholar 

  • Corrigan CJ, Kay AB (1992) T cells and eosinophils in the pathogenesis of asthma. Immunol Today 13:501–507

    Article  PubMed  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Huang Y, Zhao Y et al. (2008) Transcription factor FOXO3a mediates apoptosis in HIV-1-infected macrophages. J Immunol 180:898–906

    PubMed  CAS  Google Scholar 

  • Dale GL, Friese P (2006) Bax activators potentiate coated-platelet formation. J Thromb Haemost 4:2664–2669

    Article  PubMed  CAS  Google Scholar 

  • Damonte G, Guida L, Sdraffa A (1992) Mechanisms of perturbation of erythrocyte calcium homeostasis in favism. Cell Calcium 13:649–658

    Article  PubMed  CAS  Google Scholar 

  • De Botton S, Sabri S, Daugas E et al. (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Dell’Angelica EC, Mullins C, Caplan S et al. (2000) Lysosome-related organelles. FASEB J 14:1265–1278

    Article  PubMed  CAS  Google Scholar 

  • Don MM, Ablett G, Bishop CJ et al. (1977) Death of cells by apoptosis following attachment of specifically allergized lymphocytes in vitro. Aust J Exp Biol Med Sci 55:407–417

    Article  PubMed  CAS  Google Scholar 

  • Donné A (1842) De l’origine des globules du sang, de leur mode de formation et luer fin. CR Acad Sci 14:366

    Google Scholar 

  • Duvall E, Wyllie AH, Morris RG (1985) Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56:351–358

    PubMed  CAS  Google Scholar 

  • Falasca L, Bergamini A, Serafino A et al. (1996) Human Kupffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes. Exp Cell Res 224:152–162

    Article  PubMed  CAS  Google Scholar 

  • Falcieri E, Bassini A, Pierpaoli S et al. (2000) Ultrastructural characterization of maturation, platelet release, and senescence of human cultured megakaryocytes. Anat Rec 258:90–99

    Article  PubMed  CAS  Google Scholar 

  • Föller M, Kasinathan RS, Koka S et al. (2008) TRPC6 contributes to the Ca2+ leak of human erythrocytes. Cell Physiol Biochem 21:183–192

    Article  PubMed  CAS  Google Scholar 

  • Föller M, Sopjani M, Mahmud H et al. (2008) Vanadate-induced suicidal erythrocyte death. Kidney Blood Press Res 31:87–93

    Article  PubMed  CAS  Google Scholar 

  • Fox JE (2001) Cytoskeletal proteins and platelet signaling. Thromb Haemost 86:198–213

    PubMed  CAS  Google Scholar 

  • Geiger C, Föller M, Herrlinger KR et al. (2008) Azathioprine-induced suicidal erythrocyte death. Inflamm Bowel Dis doi:10.1002/ibd.20433

    Google Scholar 

  • Gemmell CH, Sefton MV, Yeo EL (1993) Platelet-derived microparticle formation involves glycoprotein IIb–IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem 268:14586–14589

    PubMed  CAS  Google Scholar 

  • Godon S (1995) The macrophage. Bioessays 17:977–986

    Article  Google Scholar 

  • Gresele P, Page C, Fuster V et al. (2003) Platelets in thrombotic and nonthrombotic disorders – pathophysiology, pharmacology and therapeutics. Leukemia 17:478–479

    Article  Google Scholar 

  • Gross A, Jockel J, Wei MC et al. (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 17:3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Gulyaeva NV (2003) Non-apoptotic functions of caspase-3 in nervous tissue. Biochemistry (Mosc) 68:1171–1180

    Article  CAS  Google Scholar 

  • Gunn A, Scrimgeour D, Potts RC et al. (1983) The destruction of peripheral-blood lymphocytes by extracorporeal exposure to ultraviolet radiation. Immunology 50:477–485

    PubMed  CAS  Google Scholar 

  • Gupta GP, Massague J (2004) Platelets and metastasis revisited: a novel fatty link. J Clin Invest 114:1691–1693

    PubMed  CAS  Google Scholar 

  • Harding C, Stahl P (1983) Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem Biophys Res Commun 113:650–658

    Article  PubMed  CAS  Google Scholar 

  • Harrison P, Cramer EM (1993) Platelet alpha-granules. Blood Rev 7:52–62

    Article  PubMed  CAS  Google Scholar 

  • Hayem G (1882) Sur le méchanisme de l’arrêt des hémorrhagies. CR Acad Sci 95:18

    Google Scholar 

  • Houwerzijl EJ, Blom NR, van der Want JJL et al. (2004) Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 103:500–506

    Article  PubMed  CAS  Google Scholar 

  • Humphrey JH (1955) Origin of blood platelets. Nature 176:38

    Article  PubMed  CAS  Google Scholar 

  • Imamdi R, de Graauw M, van de Water B (2004) Protein kinase C mediates cisplatin-induced loss of adherens junctions followed by apoptosis of renal proximal tubular epithelial cells. J Pharmacol Exp Ther 311:892–903

    Article  PubMed  CAS  Google Scholar 

  • Ishimatsu Y, Kadota J, Iwashita T et al. (2004) Macrolide antibiotics induce apoptosis of human peripheral lymphocytes in vitro. Int J Antimicrob Agents 24:247–253

    Article  PubMed  CAS  Google Scholar 

  • Jardin I, Redondo PC, Salido GM et al. (2008) Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783:84–97

    Article  PubMed  CAS  Google Scholar 

  • Jerome KR, Tait JF, Koelle DM et al. (1998) Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis. J Virol 72:436–441

    PubMed  CAS  Google Scholar 

  • Kaluzhny Y, Yu G, Sun S et al. (2002) BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood 100:1670–1678

    Article  PubMed  CAS  Google Scholar 

  • Kanthasamy AG, Kitazawa M, Kanthasamy A et al. (2003) Role of proteolytic activation of protein kinase C delta in oxidative stress-induced apoptosis. Antioxid Redox Signal 5:609–620

    Article  PubMed  CAS  Google Scholar 

  • Kasempimolporn S, Tirawatnapong T, Saengseesom W et al. (2001) Immunosuppression in rabies virus infection mediated by lymphocyte apoptosis. Jpn J Infect Dis 54:144–147

    PubMed  CAS  Google Scholar 

  • Kaushansky K (2005) The molecular mechanisms that control thrombopoiesis. J Clin Invest 115:3339–3347

    Article  PubMed  CAS  Google Scholar 

  • Kelton JG (1987) Platelet and red cell clearance is determined by the interaction of the IgG and complement on the cells and the activity of the reticuloendothelial system. Transfus Med Rev 1:75–84

    PubMed  CAS  Google Scholar 

  • Kerrigan SW, Gaur M, Murphy RP et al. (2004) Caspase-12: a developmental link between G-protein-coupled receptors and integrin alphaIIbbeta3 activation. Blood 104:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Kiedaisch V, Akel A, Niemoeller OM et al. (2008) Zinc-induced suicidal erythrocyte death. Am J Clin Nutr 87:1530–1534

    PubMed  CAS  Google Scholar 

  • Kinoshita R, Ohno S (1961) Biodynamics of thrombopoiesis. In: Blood platelets. Henry Ford Hospital International Symposium 1960, Little, Brown & Co, Boston

    Google Scholar 

  • Kita H, Gleich GJ (1996) Chemokines active on eosinophils: potential roles in allergic inflammation. J Exp Med 183:2421–2426

    Article  PubMed  CAS  Google Scholar 

  • Klenerman P, Cerundolo V, Dunbar PR (2002) Tracking T cells with tetramers: new tales from new tools. Nat Rev Immunol 2:263–272

    Article  PubMed  CAS  Google Scholar 

  • Kluck RM, Esposti MD, Perkins G et al. (1999) The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol 147:809–822

    Article  PubMed  CAS  Google Scholar 

  • Koepke JF, Koepke JA (1986) Reticulocytes. Clin Lab Haematol 8:169–179

    PubMed  CAS  Google Scholar 

  • Kuwana M, Okazaki Y, Kodama H et al. (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74:833–845

    Article  PubMed  CAS  Google Scholar 

  • Lam KM, Vasconcelos AC (1994) Newcastle disease virus-induced apoptosis in chicken peripheral blood lymphocytes. Vet Immunol Immunopathol 44:45–56

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Lang KS, Lang PA et al. (2006) Osmotic shock-induced suicidal death of erythrocytes. Acta Physiol (Oxf) 187:191–198

    Article  CAS  Google Scholar 

  • Lang KS, Lang PA, Bauer C et al. (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202

    Article  PubMed  CAS  Google Scholar 

  • Laso FJ, Pastor I, Orfao A (2005) Immune system and alcoholic liver disease. Med Clin (Barc) 125:263–269

    Article  Google Scholar 

  • Leytin V, Allen DJ, Lyubimov E et al. (2007) Higher thrombin concentrations are required to induce platelet apoptosis than to induce platelet activation. Br J Haematol 136:762–764

    Article  PubMed  CAS  Google Scholar 

  • Leytin V, Allen DJ, Mykhaylov S et al. (2006) Thrombin-triggered platelet apoptosis. J Thromb Haemost 4:2656–2663

    Article  PubMed  CAS  Google Scholar 

  • Leytin V, Mykhaylov S, Starkey AF et al. (2006) Intravenous immunoglobulin inhibits anti-glycoprotein IIb-induced platelet apoptosis in a murine model of immune thrombocytopenia. Br J Haematol 133:78–82

    PubMed  CAS  Google Scholar 

  • Lim WS, Timmins JM, Seimon TA et al. (2008) Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117:940–951

    Article  PubMed  CAS  Google Scholar 

  • Loop T, Dovi-Akue D, Frick M et al. (2005) Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology 102:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Lopez JJ, Salido GM, Gómez-Arteta E et al. (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J Thromb Haemost 5:1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Lopez JJ, Salido GM, Pariente JA et al. (2008) Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost 6:1780–1788

    Article  PubMed  CAS  Google Scholar 

  • Ma AD, Abrams CS (1999) Pleckstrin homology domains and phospholipid-induced cytoskeletal reorganisation. Thromb Haemost 82:399–406

    PubMed  CAS  Google Scholar 

  • Mahmud H, Föller M, Lang F (2008) Suicidal erythrocyte death triggered by cisplatin. Toxicology 249:40–44

    Article  PubMed  CAS  Google Scholar 

  • Mason KD, Carpinelli MR, Fletcher JI et al. (2007) Programmed anuclear cell death delimits platelet life span. Cell 128:1173–1186

    Article  PubMed  CAS  Google Scholar 

  • McClain DE, Kalinich JF, Ramakrishnan N (1995) Trolox inhibits apoptosis in irradiated MOLT-4 lymphocytes. FASEB J 9:1345–1354

    PubMed  CAS  Google Scholar 

  • Menasche G, Feldmann J, Fischer A et al. (2005) Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol Rev 203:165–179

    Article  PubMed  CAS  Google Scholar 

  • Metkar SS, Wang B, Ebbs ML et al. (2003) Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J Cell Biol 160:875–885

    Article  PubMed  CAS  Google Scholar 

  • Mezzano D, Aranda E, Foradori A et al. (1984) Kinetics of platelet density subpopulations in splenectomized mongrel dogs. Am J Hematol 17:373–382

    Article  PubMed  CAS  Google Scholar 

  • Migliorati G, Nicoletti I, Nocentini G et al. (1994) Dexamethasone and interleukins modulate apoptosis of murine thymocytes and peripheral T-lymphocytes. Pharmacol Res 30:43–52

    Article  PubMed  CAS  Google Scholar 

  • Min B, Paul WE (2008) Basophils and type 2 immunity. Curr Opin Hematol 15:59–63

    Article  PubMed  CAS  Google Scholar 

  • Miyajima A, Miyatake S, Schreurs J et al. (1988) Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB J 2:2462–2473

    PubMed  CAS  Google Scholar 

  • Miyamoto T, Ohneda O, Arai F et al. (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98:2544–2554

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki Y, Nomura S, Miyake T et al. (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88:3456–3464

    PubMed  CAS  Google Scholar 

  • Mizunoe S, Kadota J, Tokimatsu I et al. (2004) Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of Bcl-xL. Int Immunopharmacol 4:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Moritz KM, Lim GB, Wintour EM (1997) Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol 273:R1829–R1844

    PubMed  CAS  Google Scholar 

  • Mustard JF, Kinlough-Rathbone RL, Packham MA (2001) History of platelets. In: Gresele P, Page C, Fuster V, Vermylen J (eds) Platelets in thrombotic and non-thrombotic disorders. Pathophysiology, pharmacology and therapeutics. Cambridge University Press, Cambridge

    Google Scholar 

  • Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, Risler T, Wieder T, Lang F (2003) Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol 14:2750–2757

    Article  PubMed  CAS  Google Scholar 

  • Nichols JE, Niles JA, Roberts NJ Jr (2001) Human lymphocyte apoptosis after exposure to influenza A virus. J Virol 75:5921–5929

    Article  PubMed  CAS  Google Scholar 

  • Niemoeller OM, Foller M, Lang C et al. (2008) Retinoic acid induced suicidal erythrocyte death. Cell Physiol Biochem 21:193–202

    Article  PubMed  CAS  Google Scholar 

  • Núñez M, Soriano V, López M et al. (2006) Coinfection with hepatitis C virus increases lymphocyte apoptosis in HIV-infected patients. Clin Infect Dis 43:1209–1212

    Article  PubMed  Google Scholar 

  • Ogilvy S, Metcalf D, Print CG et al. (1999) Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci USA 96:14943–14948

    Article  PubMed  CAS  Google Scholar 

  • Paul WE (1989) Pleiotropy and redundancy: T cell-derived lymphokines in the immune response. Cell 57:521–524

    Article  PubMed  CAS  Google Scholar 

  • Perrin-Wolff M, Bertoglio J, Bressac B et al. (1995) Structure-activity relationships in glucocorticoid-induced apoptosis in T lymphocytes. Biochem Pharmacol 50:103–110

    Article  PubMed  CAS  Google Scholar 

  • Polenakovic M, Sikole A (1996) Is erythropoietin a survival factor for red blood cells? J Am Soc Nephrol 7:1178–1182.

    PubMed  CAS  Google Scholar 

  • Radley JM, Haller CJ (1983) Fate of senescent megakaryocytes in the bone marrow. Br J Haematol 53:277–287

    Article  PubMed  CAS  Google Scholar 

  • Romero PJ, Romero EA (1999) Effect of cell ageing on Ca2+ influx into human red cells. Cell Calcium 26:131–137

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Lopez JJ, Gomez-Arteta E et al. (2006) Early caspase-3 activation independent of apoptosis is required for cellular function. J Cell Physiol 209:142–152

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Porras T, Conde M et al. (2001) Cyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets. J Biol Chem 276:15666–15675

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000a) The actin cytoskeleton in store-mediated calcium entry. J Physiol 526:221–229

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000b) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Trends Cardiovasc Med 10:327–332

    Article  PubMed  CAS  Google Scholar 

  • Sanz C, Benet I, Richard C et al. (2001) Antiapoptotic protein Bcl-x(L) is up-regulated during megakaryocytic differentiation of CD34+ progenitors but is absent from senescent megakaryocytes. Exp Hematol 29:728–735

    Article  PubMed  CAS  Google Scholar 

  • Schroeder WA (1963) The hemoglobins. Annu Rev Biochem 32:301–320

    Article  PubMed  CAS  Google Scholar 

  • Sebbagh M, Hamelin J, Bertoglio J et al. (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471

    Article  PubMed  CAS  Google Scholar 

  • Schrijvers DM, De Meyer GR, Herman AG et al. (2007) Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 73:470–480

    Article  PubMed  CAS  Google Scholar 

  • Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  PubMed  CAS  Google Scholar 

  • Seta N, Kuwana M (2007) Human circulating monocytes as multipotential progenitors. Keio J Med 56:41–47

    Article  PubMed  Google Scholar 

  • Shcherbina A, Remold-O’Donnel E (1999) Role of caspase in a subset of human platelet activation responses. Blood 93:4222–4231

    PubMed  CAS  Google Scholar 

  • Sims PJ, Wiedmer T, Esmon CT et al. (1989) Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 264:17049–17057

    PubMed  CAS  Google Scholar 

  • Sopjani M, Föller M, Lang F (2008) Gold stimulates Ca2+ entry into and subsequent suicidal death of erythrocytes. Toxicology 244:271–279

    Article  PubMed  CAS  Google Scholar 

  • Spender LC, Cannell EJ, Hollyoake M et al. (1999) Control of cell cycle entry and apoptosis in B lymphocytes infected by Epstein-Barr virus. J Virol 73:4678–4688

    PubMed  CAS  Google Scholar 

  • Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264

    Article  PubMed  CAS  Google Scholar 

  • Tans G, Rosing J, Thomassen MC et al. (1991) Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 77:2641–2648

    PubMed  CAS  Google Scholar 

  • Taube J, McWilliam N, Luddington R et al. (1999) Activated protein C resistance: effect of platelet activation, platelet-derived microparticles, and atherogenic lipoproteins. Blood 93:3792–3797

    PubMed  CAS  Google Scholar 

  • Thaulow E, Erikssen J, Sandvik L et al. (1991) Blood platelet count and function are related to total and cardiovascular death in apparently healthy men. Circulation 84:613–617

    PubMed  CAS  Google Scholar 

  • Tonon G, Luo X, Greco NJ et al. (2002) Weak platelet agonists and U46619 induce apoptosis-like events in platelets, in the absence of phosphatidylserine exposure. Thromb Res 107:345–350

    Article  PubMed  CAS  Google Scholar 

  • Tuosto L, Cundari E, Gilardini Montani MS et al. (1994) Analysis of susceptibility of mature human T lymphocytes to dexamethasone-induced apoptosis. Eur J Immunol 24:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576

    Article  PubMed  CAS  Google Scholar 

  • VanWijk MJ, VanBavel E, Sturk A et al. (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Yin XM, Chao DT et al. (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10:2859–2869

    Article  PubMed  CAS  Google Scholar 

  • Wang TH, Wang HS (1999) Apoptosis: (2) characteristics of apoptosis. J Formos Med Assoc 98:531–542

    PubMed  CAS  Google Scholar 

  • Wardlaw AJ, Brightling C, Green R et al. (2000) Eosinophils in asthma and other allergic diseases. Br Med Bull 56:985–1003

    Article  PubMed  CAS  Google Scholar 

  • Waring P (1990) DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels. J Biol Chem 265:14476–14480

    PubMed  CAS  Google Scholar 

  • Wasmoen TL, Bell MP, Loegering DA et al. (1988) Biochemical and amino acid sequence analysis of human eosinophil granule major basic protein. J Biol Chem 263:12559–12563

    PubMed  CAS  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  PubMed  CAS  Google Scholar 

  • Wolf BB, Goldstein JC, Stennicke HR et al. (1999) Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94:1683–1692

    PubMed  CAS  Google Scholar 

  • Wright JH (1906) The origin and nature of the blood plates. Boston Med Surg J 4:178–195

    Google Scholar 

  • Yang H, Miller WM, Papoutsakis ET (2002) Higher pH promotes megakaryocytic maturation and apoptosis. Stem Cells 20:320–328

    Article  PubMed  CAS  Google Scholar 

  • Zachariae CO (1993) Chemotactic cytokines and inflammation. Biological properties of the lymphocyte and monocyte chemotactic factors ELCF, MCAF and IL-8. Acta Derm Venereol Suppl 181:1–37

    CAS  Google Scholar 

  • Zauli G, Vitale M, Falcieri E et al. (1997) In vitro senescence and apoptotic cell death of human megakaryocytes. Blood 90:2234–2243

    PubMed  CAS  Google Scholar 

  • Zhao X, Wang D, Zhao Z et al. (2006) Caspase-3-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. J Biol Chem 281:29357–29368

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Wang Q, Evers BM et al. (2005) Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatr Res 58:1192–1197

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RF, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rosado, J. (2009). Apoptotic Events in Blood Cells. In: Salido, G.M., Rosado, J.A. (eds) Apoptosis: Involvement of Oxidative Stress and Intracellular Ca2+ Homeostasi. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9873-4_6

Download citation

Publish with us

Policies and ethics