Skip to main content

Abstract

Apoptosis, an essential physiological process that is required for the normal development and maintenance of tissue homeostasis, is mediated by active intrinsic mechanisms, although extrinsic factors can also contribute. Aerobic metabolism induces the production of reactive oxygen species (ROS), which are able to induce oxidative stress that promotes cellular apoptosis. The mechanisms of ROS-induced modifications in ion transport pathways involves oxidation of sulphydryl groups located in the ion transport proteins, peroxidation of membrane phospholipids, inhibition of membrane-bound regulatory enzymes and modification of the oxidative phosphorylation and ATP levels. Alterations in the ion transport mechanisms lead to changes in a second messenger system, primary Ca2+ homeostasis. Ca2+ disregulation induces mitochondrial depolarization, which further augments the abnormal electrical activity and disturbs signal transduction, causing cell dysfunction and apoptosis. Control of ROS levels in cells is important, because cellular dysfunction triggered by ROS is a major factor contributing to the development of many diseases. Available evidences show that ROS can induce increases in cytosolic free Ca2+ concentration ([Ca2+]c) by release of the divalent cation from internal stores and impairment of Ca2+ clearance systems. In fact, [Ca2+]c increase is a constant feature of pathological states associated with oxidative stress and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson JJ, Zable AC, Favero TC et al. (1995) Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J Biol Chem 270:29644–29647

    Google Scholar 

  • Antunes F, Cadenas E (2000) Estimation of H2O2 gradients across biomembranes. FEBS Lett 475:121–126

    Article  PubMed  CAS  Google Scholar 

  • Ashby MC, Tepikin AV (2002) Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev 82:701–734

    PubMed  CAS  Google Scholar 

  • Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. In: Carafoli E and Brini M (eds) Calcium signalling and disease. Subcellular biochemistry, vol 45. Springer, Berlin, Heidelberg, New York, pp 481–506

    Chapter  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry. Biochem J 312:1–11

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    PubMed  Google Scholar 

  • Bielefeldt K, Whiteis CA, Sharma RV et al. (1997) Reactive oxygen species and calcium homeostasis in cultured human intestinal smooth muscle cells. Am J Physiol 272:G1439–G1450

    PubMed  CAS  Google Scholar 

  • Biswas S, Chida AS, Rahman I (2006) Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 71:551–564

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  • Bobe R, Bredoux R, Corvazier E et al. (2005) How many Ca2+ ATPase isoforms are expressed in a cell type? A growing family of membrane proteins illustrated by studies in platelets. Platelets 16:133–150

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Patterson RL, Sedaghat L et al. (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Bootman MD, Berridge MJ, Roderick HL (2002) Calcium signalling: more messengers, more channels, more complexity. Curr Biol 12:563–565

    Article  Google Scholar 

  • Bootman MD, Taylor CW, Berridge MJ (1992) The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem 267:25113–25119

    PubMed  CAS  Google Scholar 

  • Borst A, Abardanel HDI (2007) Relating a calcium indicator signal to the unperturbed calcium concentration time-course. Theor Biol Med Mod 4:1–13

    Article  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL et al. (2004) Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  • Case RM, Eisner D, Gurney A et al. (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 42:345–350

    Article  PubMed  CAS  Google Scholar 

  • Cavallini L, Coassin M, Alexandre A (1995) Two classes of agonist-sensitive Ca2+ stores in platelets, as identified by their differential sensitivity to 2,5-di-(tert-butyl)-1,4-benzohydroquinone and thapsigargin. Biochem J 310:449–452

    PubMed  CAS  Google Scholar 

  • Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Rad Biol Med 29:323–333

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Mayer MU, Squier TC (2005) Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase. Biochemistry 44:4737–4747

    Article  PubMed  CAS  Google Scholar 

  • Collins TJ, Berridge MJ, Lipp P et al. (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627

    Article  PubMed  CAS  Google Scholar 

  • Colston JT, Chandrasekar B, Freeman GL (2002) A novel peroxide-induced calcium transient regulates interleukin-6 expression in cardiac-derived fibroblasts. J Biol Chem 277:23477–23483

    Article  PubMed  CAS  Google Scholar 

  • Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  PubMed  CAS  Google Scholar 

  • Favero TG, Zable AC, Abramson JJ (1995) Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem 270:25557–25563

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko JV, Maruyama Y, Yano K et al. (2003) NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol 163:271–282

    Article  PubMed  CAS  Google Scholar 

  • Gilabert JA, Bakowski D, Parekh, A (2001) Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J 20:2672–2679

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Granados MP, Salido GM et al. (2003) Changes in mitochondrial activity evoked by cholecystokinin in isolated mouse pancreatic acinar cells. Cell Signal 15:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Granados MP, Salido GM et al. (2005) H2O2-induced changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Mol Cell Biochem 269:165–173

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Salido GM (2001) Participation of mitochondria in calcium signalling in the exocrine pancreas. J Physiol Biochem 57:331–339

    Article  PubMed  CAS  Google Scholar 

  • Graier WF, Hoebel BG, Paltauf-Doburzynska J et al. (1998) Effects of superoxide anions on endothelial Ca2+ signaling pathways. Arterioscler Thromb Vasc Biol 18:1470–1479

    PubMed  CAS  Google Scholar 

  • Granados MP, Salido GM, Pariente JA et al. (2004) Generation of ROS in response to CCK-8 stimulation in mouse pancreatic acinar cells. Mitochondrion 3:285–296

    Article  PubMed  CAS  Google Scholar 

  • Granados MP, Salido GM, Pariente JA et al. (2005) Effect of H2O2 on CCK-8-evoked changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Biol Cell 97:847–856

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Guerini D (1998) The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res 292:191–197

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Martín Y, Martín-Romero FJ, Iniesta-Vaquera FA et al. (2004) Modulation of sarcoplasmic reticulum Ca2+-ATPase by chronic and acute exposure to peroxynitrite. Eur J Biochem 271:2647–2657

    Article  PubMed  CAS  Google Scholar 

  • Heiner I, Eisfeld J, Luckhoff A (2003) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33:533–540

    Article  PubMed  CAS  Google Scholar 

  • Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Corda S, Zweier JL et al. (1998) Hydrogen peroxide induces intracellular calcium oscillations in human aortic endothelial cells. Circulation 97:268–275

    PubMed  CAS  Google Scholar 

  • Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y, Kageyama K, Kondo T (2005) Overexpression of calreticulin sensitizes SERCA2a to oxidative stress. Biochem Biophys Res Comm 329:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Jeong S-Y, Seol D-W (2008) The role of mitochondria in apoptosis. BMB Rep 41:11–22

    PubMed  CAS  Google Scholar 

  • Jiang S, Chow SC, Nicotera P et al. (1994) Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca2+-ATPase inhibitor thapsigargin. Exp Cell Res 212:84–92

    Article  PubMed  CAS  Google Scholar 

  • Klonowski-Stumpe H, Schreiber R, Grolik M et al. (1997) Effect of oxidative stress on cellular functions and cytosolic free calcium of rat pancreatic acinar cells. Am J Physiol 272:G1489–G1498

    PubMed  CAS  Google Scholar 

  • Korzets A, Chagnac A, Weinstein T et al. (1999) H2O2 induces DNA repair in mononuclear cells: evidence for association with cytosolic Ca2+ fluxes. J Lab Clin Med 133:362–369

    Article  PubMed  CAS  Google Scholar 

  • Krippeit-Drews P, Haberland C, Fingerle J et al. (1995) Effects of H2O2 on membrane potential and [Ca2+]i of cultured rat arterial smooth muscle cells. Biochem Biophys Res Commun 209:139–145

    Article  PubMed  CAS  Google Scholar 

  • Krippeit-Drews P, Krämer C, Welker S et al. (1999) Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol 514:471–481

    Article  PubMed  CAS  Google Scholar 

  • Lajas AI, Pozo MJ, Camello PJ et al. (1999) Phenylarsine oxide evokes intracellular calcium increases and amylase secretion in isolated rat pancreatic acinar cells. Cell Signal 11:727–734

    Article  PubMed  CAS  Google Scholar 

  • Lajas AI, Sierra V, Camello PJ et al. (2001) Vanadate inhibits the calcium extrusion in rat pancreatic acinar cells. Cell Signal 13:451–456

    Google Scholar 

  • Lao Y, Chang DC (2008) Mobilization of Ca2+ from endoplasmic reticulum to mitochondria plays a positive role in the early stage of UV- or TNF α-induced apoptosis. Biochem Biophys Res Commun 373:42–47

    Article  PubMed  CAS  Google Scholar 

  • Lopez JJ, Camello-Almaraz C, Pariente JA et al. (2005) Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H$^+$-ATPases in human platelets. Biochem J 390:243–252

    Article  PubMed  CAS  Google Scholar 

  • Lückhoff A, Clapham DE (1992) Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel. Nature 355:356–358

    Article  PubMed  Google Scholar 

  • Ma HT, Patterson RL, van Rossum DB et al. (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Manjarres IM, Chamero P, Domingo B et al. (2008) Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflugers Arch – Eur J Physiol 455:961–970

    Article  CAS  Google Scholar 

  • Matsuda T, Takuma K, Baba A (1997) Na+-Ca2+ exchanger: physiology and pharmacology. Jpn J Pharmacol 74:1–20

    Article  PubMed  CAS  Google Scholar 

  • McCleskey EW (1994) Calcium channels: cellular roles and molecular mechanisms. Curr Opinion Neurobiol 4:304–312

    Article  CAS  Google Scholar 

  • McConkey DJ, Orrenius S (1997) The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun 239:357–366

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10–14

    Article  PubMed  CAS  Google Scholar 

  • Meyer TN, Gloy J, Hug MJ et al. (1996) Hydrogen peroxide increases the intracellular calcium activity in rat mesangial cells in primary culture. Kidney Int 49:388–395

    Article  PubMed  CAS  Google Scholar 

  • Moreau VH, Castilho RF, Ferreira ST et al. (1998) Oxidative damage to sarcoplasmic reticulum Ca2+-ATPase AT submicromolar iron concentrations: evidence for metal-catalyzed oxidation. Free Radic Biol Med 25:554–560

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Orrenius S (1998) The role of calcium in apoptosis. Cell Calcium 23:173–180

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Damron D, Nieminen AL et al. (2000) Depletion of intracellular Ca2+ by caffeine and ryanodine induces apoptosis of Chinese hamster ovary cells transfected with ryanodine receptor. J Biol Chem 275:19978–19984

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB (2003) Mitochondrial regulation of intracellular Ca2+ signaling: more than just simple Ca2+ buffers. News Physiol Sci 18:252–256

    PubMed  CAS  Google Scholar 

  • Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  • Pariente JA, Camello C, Camello PJ et al. (2001) Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol 179:27–35

    Article  PubMed  CAS  Google Scholar 

  • Pariente JA, Lajas AI, Pozo MJ et al. (1999) Oxidizing effects of vanadate on calcium mobilization and amylase release in rat pancreatic acinar cells. Biochem Pharmacol 58:77–84

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98:487–499

    Article  PubMed  Google Scholar 

  • Pedersen PL (2007) Transport ATPases into the year 2008: A brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 39:349–355

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298–5308

    Article  PubMed  CAS  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P et al. (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    PubMed  CAS  Google Scholar 

  • Pu Y, Luo KQ, Chang DC (2002) A Ca2+ signal is found upstream of cytochrome c release during apoptosis in HeLa cells. Biochem Biophys Res Commun 299:762–769

    Article  PubMed  CAS  Google Scholar 

  • Redondo PC, Harper AG, Salido GM et al. (2004a) A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets. J Physiol 558:99–109

    Google Scholar 

  • Redondo PC, Jardín I, Hernández-Cruz JM et al. (2005) Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochem Biophys Res Comm 333:794–802

    Article  PubMed  CAS  Google Scholar 

  • Redondo PC, Lajas AI, Salido GM et al. (2003) Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells. Biochem J 370:255–263

    Article  PubMed  CAS  Google Scholar 

  • Redondo PC, Salido GM, Pariente JA et al. (2004b) Dual effect of hydrogen peroxide on store-mediated calcium entry in human platelets. Biochem Pharmacol 67:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Redondo PC, Salido GM, Rosado JA et al. (2004c) Effect of hydrogen peroxide on Ca2+ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. Biochem Pharmacol 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG (2006) Cell signalling: H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Rizzuto R, Pinton P, Ferrari D et al. (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619–8627

    Article  PubMed  CAS  Google Scholar 

  • Rooney TA, Renard DC, Sass EJ et al. (1991) Spatial and temporal organization of calcium signalling in hepatocytes. J Biol Chem 266:12272–12282

    PubMed  CAS  Google Scholar 

  • Rosado JA, Graves D, Sage SO (2000a) Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J 351:429–437

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Jenner S, Sage SO (2000b) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem 275:7527–7533

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Lopez JJ, Harper AG et al. (2004a) Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J Biol Chem 279:29231–29235

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Redondo PC, Salido GM et al. (2004b) Hydrogen peroxide generation induces pp60src activation in human platelets: evidence for the involvement of this pathway in store-mediated calcium entry. J Biol Chem 279:1665–1675

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000a) Protein kinase C activates non-capacitative calcium entry in human platelets. J Physiol 529:159–169

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000b) Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochem J 347:183–192

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000c) Regulation of plasma membrane Ca2+-ATPase by small GTPases and phosphoinositides in human platelets. J Biol Chem 275:19529–19535

    Article  PubMed  CAS  Google Scholar 

  • Roveri A, Coassin M, Maiorino M et al. (1992) Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch Biochem Biophys 297:265–270

    Article  PubMed  CAS  Google Scholar 

  • Sage SO (1992) Three routes for receptor-mediated Ca2+ entry. Curr Biol 2:312–314

    Article  PubMed  CAS  Google Scholar 

  • Sakaida I, Thomas AP, Farber JL (1991) Increases in cytosolic calcium ion concentration can be dissociated from the killing of cultured hepatocytes by tert-butyl hydroperoxide. J Biol Chem 266:717–722

    PubMed  CAS  Google Scholar 

  • Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Yoshimaru T, Matsui T et al. (2003) Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. J Immunol 171:6119–6127

    PubMed  CAS  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signalling. Am J Physiol 279:L1005–L1028

    CAS  Google Scholar 

  • Thorn P, Brady P, Llopis J et al. (1992) Cytosolic Ca2+ spikes evoked by the thiol reagent thimerosal in both intact and internally perfused single pancreatic acinar cells. Pflügers Arch 422:173–178

    Article  PubMed  CAS  Google Scholar 

  • Törnquist K, Vainio PJ, Björklund S et al. (2000) Hydrogen peroxide attenuates store-operated calcium entry and enhances calcium extrusion in thyroid FRTL-5 cells. Biochem J 351:47–56

    Article  PubMed  Google Scholar 

  • Tsien RW, Lipscombe D, Madison D et al. (1995) Reflections on Ca2+-channel diversity, 1988–1994. Trends Neurosci 18:52–54

    Article  PubMed  CAS  Google Scholar 

  • Ueda N, Shah SV (1992) Role of intracellular calcium in hydrogen peroxide-induced renal tubular cell injury. Am J Physiol 263:F214–F221

    PubMed  CAS  Google Scholar 

  • Verkhratsky A (2007) Calcium and cell death. In: Carafoli E and Brini M (eds) Calcium signalling and disease. Subcellular biochemistry, vol 45. Springer, Berlin, Heidelberg, New York, pp 465–476

    Chapter  Google Scholar 

  • Villalobos C, Nuñez L, Montero M et al. (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353

    Article  PubMed  CAS  Google Scholar 

  • Volk T, Hensel M, Kox WJ (1997) Transient Ca2+ changes in endothelial cells induced by low doses of reactive oxygen species: role of hydrogen peroxide. Mol Cell Biochem 171:11–21

    Article  PubMed  CAS  Google Scholar 

  • Votyakova TV, Reynolds IJ (2005) Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I. J Neurochem 93:526–537

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  • Wang X, Takeda S, Mochizuki S et al. (1999) Mechanisms of hydrogen peroxide-induced increase in intracellular calcium in cardiomyocytes. J Cardiovasc Pharmacol Ther 4:41–48

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Roesner JP, Nebe B et al. (1998) Increased cytosolic Ca2+ amplifies oxygen radical-induced alterations of the ultrastructure and the energy metabolism of isolated rat pancreatic acinar cells. Digestion 59:175–185

    Article  PubMed  CAS  Google Scholar 

  • Whittemore ER, Loo DT, Watt JA et al. (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67:921–932

    Article  PubMed  CAS  Google Scholar 

  • Wictome M, Henderson I, Lee AG et al. (1992) Mechanism of inhibition of the calcium pump of sarcoplasmic reticulum by thapsigargin. Biochem J 283:525–529

    PubMed  CAS  Google Scholar 

  • Wu KD, Lee WS, Wey J et al. (1995) Localization and quantification of endoplasmic reticulum Ca2+-ATPase isoform transcripts. Am J Physiol 269:C775–C784

    PubMed  CAS  Google Scholar 

  • Xie Q, Zhang Y, Zhai C et al. (2002) Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J Biol Chem 277:16559–16566

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Camello PJ, Verkhratsky A et al. (2004) Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Neurobiol Aging 25:349–359

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Petersen OH, Tepikin AV (2004) Dual sensitivity of sarcoplasmic Ca2+-ATPase to cytosolic and endoplasmic reticulum Ca2+ as a mechanism of modulating cytosolic Ca2+ oscillations. Biochem J 383:353–360

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Ferrer-Montiel AV, Montal M et al. (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98:475–485

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH (2000) Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules. Trends Neurosci 23:424–428

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Michaelis ML (1999) Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase. Free Radic Biol Med 27:810–821

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Salido, G. (2009). Oxidative Stress, Intracellular Calcium Signals and Apoptotic Processes. In: Salido, G.M., Rosado, J.A. (eds) Apoptosis: Involvement of Oxidative Stress and Intracellular Ca2+ Homeostasi. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9873-4_1

Download citation

Publish with us

Policies and ethics