Skip to main content

The biogenic amine hypothesis of affective disorders is based primarily on the observation that antidepressant drugs may produce their therapeutic effects by interacting with the noradrenergic (NA) or the serotonergic (5HT) systems. For example, several antidepressants cause inhibition of the reuptake of nor-epinephrine (NE) or serotonin (5HT), thus increasing their levels in the synaptic cleft. Antidepressants could also decrease the metabolism of NE or 5HT by inhibiting enzymes, such as monoamine oxidase (MAO). However, direct evidence in support of the MAO hypothesis has been lacking. Initial studies to validate this hypothesis focused primarily on the determination of amines and their metabolites in the CSF, urine, and/or plasma. Further studies revealed that only are these abnormalities of biogenic amine levels and of their metabolites but that affective disorders may be associated with abnormalities of several receptors and the receptor-linked signaling systems, such as abnormalities of α- and β-adrenergic receptors and abnormalities of signaling systems, namely, the phosphoinositide (PI) and the adenylyl cyclase (AC) signaling systems. Some more recent studies indicate abnormalities of several transcription factors, such as cyclic-AMP response element binding (CREB) and of their target genes, such as brain-derived neurotrophin factor (BDNF), in affective disorders. These studies are primarily based on either postmortem brain tissue obtained from deceased subjects or on the use of peripheral tissues, such as platelets or white cells obtained from patients. Because of the inaccessibility of the living human brain, these peripheral sources have been used both for studying the pathophysiology of mood disorders (MD) and for their possible use as diagnostic and prognostic markers. Although the use of peripheral tissues, such as platelets and lymphocytes, as possible central markers seems questionable, several lines of evidence support their relationship to the central nervous system (CNS).

In this chapter, we describe the studies of several neurotransmitter receptors, namely, the α1- and α2-adrenergic receptors in platelets and the β2-adrenergic receptors in neutrophils, as well as the 5HT2A receptors in platelets of depressed and bipolar patients. We also describe the studies of the receptor-linked signaling system, namely, the phosphoinositide (PI) and the adenylyl cyclase (AC) signaling systems, in platelets and/or lymphocytes of these patients. In addition, we have also reviewed the studies of various components of these receptor-linked signaling pathways, namely, studies of protein kinase C (PKC) in depression and bipolar illness, studies of phos-pholipase C (PLC) and protein kinase A (PKA) studies of some of the G proteins in platelets and/or lymphocytes. Finally, we have discussed the studies of CREB and other transcription factors, as well as the role of some of their target genes, such as BDNF, which have been shown to play an important role in the pathophysiology of MD. We have also reviewed the studies on the role of cytokines in MD. In this review we also discuss the similarities or dissimilarities in the findings between peripheral tissues and postmortem brains and the usefulness of these receptors and signaling molecules as possible biological markers for the identification of patients with MD and also their possible role as prognostic markers. Finally, uses of some of these markers in identifying suicidal patients have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschfeld, R.M. and M.M. Weissman, Risk factors for major depression and bipolar disorder, in Neuro-pharmacology — the Fifth Generation of Progress, K.L. Davis et al., Editors. 2002, Lippincott Williams & Wilkins: Philadelphia, pp. 1017–25.

    Google Scholar 

  2. Kessler, R.C., K.A. McGonagle, S. Zhao, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994;51:8–19.

    PubMed  CAS  Google Scholar 

  3. Reducing Suicide, A National Imperative. Committee on Pathophysiology and Prevention of Adolescent and Adult Suicide, Board on Neuroscience and Behavioral Health, Institute of Medicine of the National Academies, S.K. Goldsmith et al., Editors, Washington, DC: The National Academies Press; 2002.

    Google Scholar 

  4. Botsis, A.F., C.R. Soldatos, and C.N. Stefanis, Suicide. Biopsychosocial Approaches. Amsterdam: Elsevier; 1997.

    Google Scholar 

  5. Moscicki, E.K., P. O'Carroll, D.S. Rae, B.Z., et al. Suicide attempts in the Epidemiologic Catchment Area Study. Yale J Biol Med 1988; 61:259–68.

    PubMed  CAS  Google Scholar 

  6. National Center for Health Statistics: Advance report of final mortality statistics. 1994, NCSH Monthly Vital Statistics Report 1992; 40 (Suppl 2).

    Google Scholar 

  7. Bunney, W.E., Jr. and J.M. Davis. Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry 1965; 13:483–94.

    PubMed  CAS  Google Scholar 

  8. Schildkraut, J.J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122:509–22.

    PubMed  CAS  Google Scholar 

  9. Coppen, A. The biochemistry of affective disorders. Br J Psychiatry 1967; 113:1237–64.

    PubMed  CAS  Google Scholar 

  10. Lapin, I.P. and G.F. Oxenkrug. Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet 1969; 1:132–6.

    PubMed  CAS  Google Scholar 

  11. van Praag, H.M. Toward a biochemical classification of depression. Adv Biochem Psychopharmacol 1974; 11:357–68.

    PubMed  Google Scholar 

  12. Duman, R.S. Synaptic plasticity and mood disorders. Mol Psychiatry 2002; 7 (Suppl 1):S 29–34.

    PubMed  CAS  Google Scholar 

  13. Halper, J.P., R.P. Brown, J.A. Sweeney, J.H. Kocsis, A. Peters, and J.J. Mann. Blunted beta-adrenergic responsivity of peripheral blood mononuclear cells in endogenous depression. Isoproterenol dose-response studies. Arch Gen Psychiatry 1988; 45:241–4.

    PubMed  CAS  Google Scholar 

  14. Ebstein, R.P., B. Lerer, B. Shapira, Z. Shemesh, D.G. Moscovich, and S. Kindler. Cyclic AMP second-messenger signal amplification in depression. Br J Psychiatry 1988; 152:665–9.

    PubMed  CAS  Google Scholar 

  15. Pandey, G.N., M.W. Dysken, D.L. Garver, and J.M. Davis. Beta-adrenergic receptor function in affective illness. Am J Psychiatry 1979; 136:675–8.

    PubMed  CAS  Google Scholar 

  16. Ebstein, R.P., D. Moscovich, S. Zeevi, Z. Amiri, and B. Lerer. Effect of lithium in vitro and after chronic treatment on human platelet adenylate cyclase activity: postreceptor modification of second messenger signal amplification. Psychiatry Res 1987; 21:221–8.

    PubMed  CAS  Google Scholar 

  17. Extein, I., J. Tallman, C.C. Smith, and F.K. Goodwin. Changes in lymphocyte beta-adrenergic receptors in depression and mania. Psychiatry Res 1979; 1:191–7.

    PubMed  CAS  Google Scholar 

  18. Mann, J.J., R.P. Brown, J.P. Halper, et al. Reduced sensitivity of lymphocyte beta-adrenergic receptors in patients with endogenous depression and psychomotor agitation. N Engl J Med 1985; 313:715–20.

    PubMed  CAS  Google Scholar 

  19. Young, L.T., P. P. Li, S.J. Kish, and J.J. Warsh. Cerebral cortex beta-adrenoceptor binding in bipolar affective disorder. J Affect Disord 1994; 30:89–92.

    PubMed  CAS  Google Scholar 

  20. Akin, D., D.H. Manier, E. Sanders-Bush, and R.C. Shelton. Signal transduction abnormalities in melancholic depression. Int J Neuropsychopharmacol 2005; 8:5–16.

    PubMed  CAS  Google Scholar 

  21. Freis, E.D. Mental depression in hypertensive patients treated for long periods with large doses of reserpine. N Engl J Med 1954; 251:1006–8.

    PubMed  CAS  Google Scholar 

  22. Harris, T.H. Depression induced by Rauwolfia compounds. Am J Psychiatry 1957; 113:950.

    PubMed  CAS  Google Scholar 

  23. Maes, M. and H.Y. Meltzer, The serotonin hypothesis of major depression, in Psychopharmacology: The Fourth Generation of Progress, F.E. Bloom and D.J. Kupfer, Editors. 1995, Raven: New York, pp. 933–44.

    Google Scholar 

  24. Pandey, G.N. and Y. Dwivedi, The serotonergic system, in Psychopharmacology: Treatment of Psychiatric Disorders, J. Ananth, Editor. 1999, Jaypee Brothers Medical Publishers: New Delhi, India, pp. 11–30.

    Google Scholar 

  25. Pandey, G.N. and Y. Dwivedi. Monoamine receptors and signal transduction mechanisms in suicide. Curr Psychiatr Rev 2006; 2:51–75.

    CAS  Google Scholar 

  26. Kopin, I.J. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 1985; 37:333–64.

    PubMed  CAS  Google Scholar 

  27. Schatzberg, A.F., J.A. Samson, K.L. Bloomingdale, et al. Toward a biochemical classification of depressive disorders. X. Urinary catecholamines, their metabolites, and D-type scores in subgroups of depressive disorders. Arch Gen Psychiatry 1989; 46:260–8.

    PubMed  CAS  Google Scholar 

  28. Asberg, M., L. Bertilsson, B. Martensson, G.P. et al. CSF monoamine metabolites in melancholia. Acta Psychiatr Scand 1984; 69:201–19.

    PubMed  CAS  Google Scholar 

  29. Asberg, M., L. Traskman, and P. Thoren. 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry 1976; 33:1193–7.

    PubMed  CAS  Google Scholar 

  30. Agren, H. Symptom patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cere-brospinal fluid: II. Suicide. Psychiatry Res 1980; 3:225–36.

    PubMed  CAS  Google Scholar 

  31. Meltzer, H.Y. and M.T. Lowy, The serotonin hypothesis of depression, in Psychopharmacology: The Third Generation of Progress, H.Y. Meltzer, Editor. 1987, Raven: New York.

    Google Scholar 

  32. Nordstrom, P., M. Samuelsson, M. Asberg, et al. CSF 5-HIAA predicts suicide risk after attempted suicide. Suicide Life Threat Behav 1994; 24:1–9.

    PubMed  CAS  Google Scholar 

  33. Roy, A., D. Pickar, M. Linnoila, et al. Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatry Res 1985; 15:281–92.

    PubMed  CAS  Google Scholar 

  34. Van Praag, H.M. Depression, suicide and the metabolism of serotonin in the brain. J Affect Disord 1982; 4:275–90.

    PubMed  Google Scholar 

  35. van Praag, H.M. CSF 5-HIAA and suicide in non-depressed schizophrenics. Lancet 1983; 2:977–8.

    PubMed  Google Scholar 

  36. Spreux-Varoquaux, O., J.C. Alvarez, I. Berlin, et al. Differential abnormalities in plasma 5-HIAA and platelet serotonin concentrations in violent suicide attempters: relationships with impulsivity and depression. Life Sci 2001; 69:647–57.

    PubMed  CAS  Google Scholar 

  37. Lidberg, L., H. Belfrage, L. Bertilsson, et al. Suicide attempts and impulse control disorder are related to low cerebrospinal fluid 5-HIAA in mentally disordered violent offenders. Acta Psychiatr Scand 2000; 101:395–402.

    PubMed  CAS  Google Scholar 

  38. Tuomisto, J. and E. Tukiainen. Decreased uptake of 5-hydroxytryptamine in blood platelets from depressed patients. Nature 1976; 262:596–8.

    PubMed  CAS  Google Scholar 

  39. Meltzer, H.Y., R.C. Arora, R. Baber, and B.J. Tricou. Serotonin uptake in blood platelets of psychiatric patients. Arch Gen Psychiatry 1981; 38:1322–6.

    PubMed  CAS  Google Scholar 

  40. Rausch, J.L., D.S. Janowsky, S.C. Risch, and L.Y. Huey. A kinetic analysis and replication of decreased platelet serotonin uptake in depressed patients. Psychiatry Res 1986; 19:105–12.

    PubMed  CAS  Google Scholar 

  41. Muck-Seler, D., N. Pivac, M. Mustapic, et al. Platelet serotonin and plasma prolactin and cortisol in healthy, depressed and schizophrenic women. Psychiatry Res 2004; 127:217–6.

    PubMed  CAS  Google Scholar 

  42. Oxenkrug, G.F. The content and uptake of 5-HT by blood platelets in depressive patients. J Neural Transm 1979; 45:285–9.

    PubMed  CAS  Google Scholar 

  43. Franke, L., H.J. Schewe, B. Muller, et al. Serotonergic platelet variables in unmedicated patients suffering from major depression and healthy subjects: relationship between 5HT content and 5HT uptake. Life Sci 2000; 67:301–5.

    PubMed  CAS  Google Scholar 

  44. Paul, S.M., M. Rehavi, P. Skolnick, et al. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin “transporter”. Arch Gen Psychiatry 1981; 38:1315–7.

    PubMed  CAS  Google Scholar 

  45. Owens, M.J. and C.B. Nemeroff. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 1994; 40:288–95.

    PubMed  CAS  Google Scholar 

  46. Asberg, M., P. Thoren, L. Traskman, et al. “Serotonin depression” — a biochemical subgroup within the affective disorders? Science 1976; 191:478–80.

    PubMed  CAS  Google Scholar 

  47. Hou, C., F. Jia, Y. Liu, and L. Li. CSF serotonin, 5-hydroxy-indolacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res 2006; 1095:154–8.

    PubMed  CAS  Google Scholar 

  48. Reddy, P.L., S. Khanna, M.N. Subhash, et al. CSF amine metabolites in depression. Biol Psychiatry 1992; 31:112–8.

    PubMed  CAS  Google Scholar 

  49. Stanley, M. and J.J. Mann. Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet 1983; 1:214–6.

    PubMed  CAS  Google Scholar 

  50. Pandey, G.N., S.C. Pandey, Y. Dwivedi, R.P. Sharma, P.G. Janicak, and J.M. Davis. Platelet serotonin-2A receptors: a potential biological marker for suicidal behavior. Am J Psychiatry 1995; 152:850–5.

    PubMed  CAS  Google Scholar 

  51. Humphrey, P.P., P. Hartig, and D. Hoyer. A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 1993; 14:233–6.

    PubMed  CAS  Google Scholar 

  52. Teitler, M. and K. Herrick-Davis. Multiple serotonin receptor subtypes: molecular cloning and functional expression. Crit Rev Neurobiol 1994; 8:175–88.

    PubMed  CAS  Google Scholar 

  53. Hoyer, D. and G. Martin. 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 1997; 36:419–28.

    PubMed  CAS  Google Scholar 

  54. Barnes, N.M. and T. Sharp. A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38:1083–152.

    PubMed  CAS  Google Scholar 

  55. Conn, P.J. and E. Sanders-Bush. Regulation of serotonin-stimulated phosphoinositide hydrolysis: relation to the serotonin 5-HT-2 binding site. J Neurosci 1986; 6:3669–75.

    PubMed  CAS  Google Scholar 

  56. Kusumi, I., T. Koyama, and I. Yamashita. Serotonin-stimulated Ca2+ response is increased in the blood platelets of depressed patients. Biol Psychiatry 1991; 30:310–2.

    PubMed  CAS  Google Scholar 

  57. Kusumi, I., T. Koyama, and I. Yamashita. Effect of various factors on serotonin-induced Ca2+ response in human platelets. Life Sci 1991; 48:2405–12.

    PubMed  CAS  Google Scholar 

  58. Elliott, J.M. and A. Kent. Comparison of [125I]iodolysergic acid diethylamide binding in human frontal cortex and platelet tissue. J Neurochem 1989; 53:191–6.

    PubMed  CAS  Google Scholar 

  59. Andres, A.H., M.L. Rao, S. Ostrowitzki, and W. Entzian. Human brain cortex and platelet serotonin2 receptor binding properties and their regulation by endogenous serotonin. Life Sci 1993; 52:313–21.

    PubMed  CAS  Google Scholar 

  60. Biegon, A., A. Weizman, L. Karp, et al. Serotonin 5-HT2 receptor binding on blood platelets—a peripheral marker for depression? Life Sci 1987; 41:2485–92.

    PubMed  CAS  Google Scholar 

  61. Pandey, G.N., S.C. Pandey, P.G. Janicak, R.C. Marks, and J.M. Davis. Platelet serotonin-2 receptor binding sites in depression and suicide. Biol Psychiatry 1990; 28:215–22.

    PubMed  CAS  Google Scholar 

  62. Hrdina, P.D., D. Bakish, J. Chudzik, A. Ravindran, and Y.D. Lapierre. Serotonergic markers in platelets of patients with major depression: upregulation of 5-HT2 receptors. J Psychiatry Neurosci 1995; 20:11–9.

    PubMed  CAS  Google Scholar 

  63. Ostrowitzki, S., M.L. Rao, J. Redei, and A.H. Andres. Concurrence of cortex and platelet serotonin2 receptor binding characteristics in the individual and the putative regulation by serotonin. J Neural Transm Gen Sect 1993; 93:27–35.

    PubMed  CAS  Google Scholar 

  64. Arora, R.C. and H.Y. Meltzer. Increased serotonin2 (5-HT2) receptor binding as measured by 3H-lysergic acid diethylamide (3H-LSD) in the blood platelets of depressed patients. Life Sci 1989; 44:725–34.

    PubMed  CAS  Google Scholar 

  65. Biegon, A., N. Essar, M. Israeli, et al. Serotonin 5-HT2 receptor binding on blood platelets as a state dependent marker in major affective disorder. Psychopharmacology (Berl) 1990; 102:73–5.

    CAS  Google Scholar 

  66. Mendelson, S.D. The current status of the platelet 5-HT(2A) receptor in depression. J Affect Disord 2000; 57:13–24.

    PubMed  CAS  Google Scholar 

  67. Butler, J. and B.E. Leonard. The platelet serotonergic system in depression and following sertraline treatment. Int Clin Psychopharmacol 1988; 3:343–7.

    PubMed  CAS  Google Scholar 

  68. Hrdina, P.D., D. Bakish, A. Ravindran, et al. Platelet serotonergic indices in major depression: up-regulation of 5-HT2A receptors unchanged by antidepressant treatment. Psychiatry Res 1997; 66:73–85.

    PubMed  CAS  Google Scholar 

  69. Rao, M.L., B. Hawellek, A. Papassotiropoulos, A. Deister, and C. Frahnert. Upregulation of the platelet Serotonin2A receptor and low blood serotonin in suicidal psychiatric patients. Neuropsychobiology 1998; 38:84–9.

    PubMed  CAS  Google Scholar 

  70. Sheline, Y.I., M.E. Bardgett, J.L. Jackson, et al. Platelet serotonin markers and depressive symptomatology. Biol Psychiatry 1995; 37:442–7.

    PubMed  CAS  Google Scholar 

  71. Rosel, P., B. Arranz, J. Vallejo, et al. Altered [3H]imipramine and 5-HT2 but not [3H]paroxetine binding sites in platelets from depressed patients. J Affect Disord 1999; 52:225–33.

    PubMed  CAS  Google Scholar 

  72. Cowen, P.J., E.M. Charig, S. Fraser, and J.M. Elliott. Platelet 5-HT receptor binding during depressive illness and tricyclic antidepressant treatment. J Affect Disord 1987; 13:45–50.

    PubMed  CAS  Google Scholar 

  73. Bakish, D., P. Cavazzoni, J. Chudzik, et al. Effects of selective serotonin reuptake inhibitors on platelet serotonin parameters in major depressive disorder. Biol Psychiatry 1997; 41:184–90.

    PubMed  CAS  Google Scholar 

  74. Mann, J.J., P.A. McBride, R.P. Brown, et al. Relationship between central and peripheral serotonin indexes in depressed and suicidal psychiatric inpatients. Arch Gen Psychiatry 1992; 49:442–6.

    PubMed  CAS  Google Scholar 

  75. Sheline, Y.I., K.J. Black, M.E. Bardgett, and J.G. Csernansky. Platelet binding characteristics distinguish placebo responders from nonresponders in depression. Neuropsychopharmacology 1995; 12:315–22.

    PubMed  CAS  Google Scholar 

  76. Biegon, A., A. Grinspoon, B. Blumenfeld, et al. Increased serotonin 5-HT2 receptor binding on blood platelets of suicidal men. Psychopharmacology (Berl) 1990; 100:165–7.

    CAS  Google Scholar 

  77. McBride, P.A., R.P. Brown, M. DeMeo, et al. The relationship of platelet 5-HT2 receptor indices to major depressive disorder, personality traits, and suicidal behavior. Biol Psychiatry 1994; 35:295–308.

    PubMed  CAS  Google Scholar 

  78. Crow, T.J., A.J. Cross, S.J. Cooper, et al. Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology 1984; 23:1561–9.

    PubMed  CAS  Google Scholar 

  79. Owen, F., D.R. Chambers, S.J. Cooper, et al. Serotonergic mechanisms in brains of suicide victims. Brain Res 1986; 362:185–8.

    PubMed  CAS  Google Scholar 

  80. Arranz, B., A. Eriksson, E. Mellerup, et al. Brain 5-HT1A, 5-HT1D, and 5-HT2 receptors in suicide victims. Biol Psychiatry 1994; 35:457–63.

    PubMed  CAS  Google Scholar 

  81. Kafka, M.S., L.J. Siever, J.I. Nurnberger, et al. Platelet alpha-adrenergic receptor function in affective disorders and schizophrenia. Psychopharmacol Bull 1985; 21:599–602.

    PubMed  CAS  Google Scholar 

  82. Joyce, J.N., A. Shane, N. Lexow, A. Winokur, M.F. Casanova, and J.E. Kleinman. Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics. Neuropsychopharmacology 1993; 8:315–36.

    PubMed  CAS  Google Scholar 

  83. Stockmeier, C.A., G.E. Dilley, L.A. Shapiro, et al. Serotonin receptors in suicide victims with major depression. Neuropsychopharmacology 1997; 16:162–73.

    PubMed  CAS  Google Scholar 

  84. Lowther, S., F. De Paermentier, M.R. Crompton, et al. Brain 5-HT2 receptors in suicide victims: violence of death, depression and effects of antidepressant treatment. Brain Res 1994; 642:281–9.

    PubMed  CAS  Google Scholar 

  85. Rosel, P., B. Arranz, L. San, et al. Altered 5-HT(2A) binding sites and second messenger inositol trisphosphate (IP(3)) levels in hippocampus but not in frontal cortex from depressed suicide victims. Psychiatry Res 2000; 99:173–81.

    PubMed  CAS  Google Scholar 

  86. Arora, R.C. and H.Y. Meltzer. 3H-imipramine binding in the frontal cortex of suicides. Psychiatry Res 1989; 30:125–35.

    PubMed  CAS  Google Scholar 

  87. Laruelle, M., A. Abi-Dargham, M.F. Casanova, et al. Selective abnormalities of prefrontal serotonergic receptors in schizophrenia. A postmortem study. Arch Gen Psychiatry 1993; 50:810–8.

    PubMed  CAS  Google Scholar 

  88. Hrdina, P.D., E. Demeter, T.B. Vu, P. Sotonyi, and M. Palkovits. 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: increase in 5-HT2 sites in cortex and amygdala. Brain Res 1993; 614:37–44.

    PubMed  CAS  Google Scholar 

  89. Arango, V., P. Ernsberger, P.M. Marzuk, et al. Autoradiographic demonstration of increased serotonin 5-HT2 and beta-adrenergic receptor binding sites in the brain of suicide victims. Arch Gen Psychiatry 1990; 47:1038–47.

    PubMed  CAS  Google Scholar 

  90. Mann, J.J., M. Stanley, P.A. McBride, and B.S. McEwen. Increased serotonin2 and beta-adrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 1986; 43:954–9.

    PubMed  CAS  Google Scholar 

  91. Pandey, G.N., Y. Dwivedi, H.S. Rizavi, et al. Higher expression of serotonin 5-HT(2A) receptors in the postmortem brains of teenage suicide victims. Am J Psychiatry 2002; 159:419–29.

    PubMed  Google Scholar 

  92. Mikuni, M., I. Kusumi, A. Kagaya, et al. Increased 5-HT-2 receptor function as measured by serotonin-stimulated phosphoinositide hydrolysis in platelets of depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 1991; 15:49–61.

    PubMed  CAS  Google Scholar 

  93. Meltzer, H.Y., B. Umberkoman-Wiita, A. Robertson, B.J. Tricou, M. Lowy, and R. Perline. Effect of 5-hydroxytrypto-phan on serum cortisol levels in major affective disorders. I. Enhanced response in depression and mania. Arch Gen Psychiatry 1984; 41:366–74.

    PubMed  CAS  Google Scholar 

  94. Meltzer, H.Y., R. Perline, B.J. Tricou, et al. Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. II. Relation to suicide, psychosis, and depressive symptoms. Arch Gen Psychiatry 1984; 41:379–87.

    PubMed  CAS  Google Scholar 

  95. Meltzer, H.Y., M. Lowy, A. Robertson, P. Goodnick, and R. Perline. Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. III. Effect of antidepressants and lithium carbonate. Arch Gen Psychiatry 1984; 41:391–7.

    PubMed  CAS  Google Scholar 

  96. Meltzer, H.Y. Serotonergic function in the affective disorders: the effect of antidepressants and lithium on the 5-hydroxytryp-tophan-induced increase in serum cortisol. Ann N Y Acad Sci 1984; 430:115–37.

    PubMed  CAS  Google Scholar 

  97. Coccaro, E.F., M.E. Berman, R.J. Kavoussi, and R.L. Hauger. Relationship of prolactin response to d-fenfluramine to behavioral and questionnaire assessments of aggression in personality-disordered men. Biol Psychiatry 1996; 40:157–64.

    PubMed  CAS  Google Scholar 

  98. Malone, K.M., E.M. Corbitt, S. Li, and J.J. Mann. Prolactin response to fenfluramine and suicide attempt lethality in major depression. Br J Psychiatry 1996; 168:324–9.

    PubMed  CAS  Google Scholar 

  99. O'Keane, V. and T.G. Dinan. Prolactin and cortisol responses to d-fenfluramine in major depression: evidence for diminished responsivity of central serotonergic function. Am J Psychiatry 1991; 148:1009–15.

    PubMed  Google Scholar 

  100. Cleare, A.J., R.M. Murray, and V. O'Keane. Reduced prolactin and cortisol responses to d-fenfluramine in depressed compared to healthy matched control subjects. Neuropsychopharmacology 1996; 14:349–54.

    PubMed  CAS  Google Scholar 

  101. Cook, E.H., Jr., K.E. Fletcher, M. Wainwright, et al. Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor. J Neurochem 1994; 63:465–9.

    PubMed  CAS  Google Scholar 

  102. Langer, S.Z., E. Zarifian, M. Briley, R. Raisman, and D. Sechter. High-affinity binding of 3H-imipramine in brain and platelets and its relevance to the biochemistry of affective disorders. Life Sci 1981; 29:211–20.

    PubMed  CAS  Google Scholar 

  103. Ellis, P.M. and C. Salmond. Is platelet imipramine binding reduced in depression? A meta-analysis. Biol Psychiatry 1994; 36:292–9.

    PubMed  CAS  Google Scholar 

  104. Goodwin, F.K. and R.M. Post, Studies of amine metabolites in affective illness and in schizophrenia: a comparative analysis., in Biology of the Major Psychosis, D.X. Freedman, Editor. 1975, Raven: New York, pp. 299–332.

    Google Scholar 

  105. Schatzberg, A.F. and J.J. Schildkraut, Recent Studies on Norepinephrine systems in mood disorders, in Psycho-pharmacology: The Fourth Generation of Progress, F.E. Bloom and D.J. Kupfer, Editors. 1995, Raven: New York, pp. 911–20.

    Google Scholar 

  106. Barnes, R.F., R.C. Veith, S. Borson, et al. High levels of plasma catecholamines in dexamethasone-resistant depressed patients. Am J Psychiatry 1983; 140:1623–5.

    PubMed  CAS  Google Scholar 

  107. Elsworth, J.D., D.E. Redmond, Jr., and R.H. Roth. Plasma and cerebrospinal fluid 3-methoxy-4-hydroxyphenylethyl-ene glycol (MHPG) as indices of brain norepinephrine metabolism in primates. Brain Res 1982; 235:115–24.

    PubMed  CAS  Google Scholar 

  108. Jimerson, D.C., J.I. Nurnberger, Jr., R.M. Post, E.S. Gershon, and I.J. Kopin. Plasma MHPG in rapid cyclers and healthy twins. Arch Gen Psychiatry 1981; 38:1287–90.

    PubMed  CAS  Google Scholar 

  109. Jimerson, D.C., T.R. Insel, V.I. Reus, and I.J. Kopin. Increased plasma MHPG in dexamethasone-resistant depressed patients. Arch Gen Psychiatry 1983; 40:173–6.

    PubMed  CAS  Google Scholar 

  110. Leckman, J.F. and J.W. Maas, Plasma MHPG: relationship to brain noradrenergic system and emerging clinical applications., in Neurobiology of Mood Disorders, R.M. Post et al., Editors. 1984, Williams & Wilkins: Baltimore, MD, pp. 529–38.

    Google Scholar 

  111. Muscettola, G., W.Z. Potter, D. Pickar, and F.K. Goodwin. Urinary 3-methoxy-4-hydroxyphenylglycol and major affective disorders. A replication and new findings. Arch Gen Psychiatry 1984; 41:337–42.

    PubMed  CAS  Google Scholar 

  112. Roy, A., D.C. Jimerson, and D. Pickar. Plasma MHPG in depressive disorders and relationship to the dexamethasone suppression test. Am J Psychiatry 1986; 143:846–51.

    PubMed  CAS  Google Scholar 

  113. Jones, F.D., J.W. Maas, H. Dekirmenjian, and J.A. Fawcett. Urinary catecholamine metabolites during behavioral changes in a patient with manic-depressive cycles. Science 1973; 179:300–2.

    PubMed  CAS  Google Scholar 

  114. Bond, P.A., F.A. Jenner, and G.A. Sampson. Daily variations of the urine content of 3-methoxy-4-hydroxyphenyl-glycol in two manic-depressive patients. Psychol Med 1972; 2:81–5.

    PubMed  CAS  Google Scholar 

  115. Agren, H. Depressive symptom patterns and urinary MHPG excretion. Psychiatry Res 1982; 6:185–96.

    PubMed  CAS  Google Scholar 

  116. Secunda, S.K., C.K. Cross, S. Koslow, M.M. Katz, J.H. Kocsis, and J.W. Maas. Studies of amine metabolites in depressed patients. Relationship to suicidal behavior. Ann N Y Acad Sci 1986; 487:231–42.

    PubMed  CAS  Google Scholar 

  117. Shiah, I.S., H.C. Ko, J.F. Lee, and R.B. Lu. Platelet 5-HT and plasma MHPG levels in patients with bipolar I and bipolar II depressions and normal controls. J Affect Disord 1999; 52:101–10.

    PubMed  CAS  Google Scholar 

  118. Brown, G.L., F.K. Goodwin, J.C. Ballenger, et al. Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1979; 1:131–9.

    PubMed  CAS  Google Scholar 

  119. Sulser, F. New Perspectives on the Mode of Action of Antidepressant Drugs. TIPS 1979; 92–94.

    Google Scholar 

  120. Pandey, G.N., B. Brown, and J.M. Davis. Effect of Treatment with Some Atypical Antidepressants on 3H-DHA Binding in the Rat Brain. Drug Dev Res 1985; 251–59.

    Google Scholar 

  121. Pandey, G.N. and J.M. Davis. Treatment with antidepres-sants and down regulation of beta-adrenergic receptors. Drug Dev Res 1985; 393–406.

    Google Scholar 

  122. Green, A.R. Evolving concepts on the interactions between antidepressant treatments and monoamine neurotransmitters. Neuropharmacology 1987; 26:815–22.

    PubMed  CAS  Google Scholar 

  123. Peroutka, S.J. and S.H. Snyder. Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 1980; 210:88–90.

    PubMed  CAS  Google Scholar 

  124. Smith, C.B., J.A. Garcia-Sevilla, and P.J. Hollingsworth. alpha 2-Adrenoreceptors in rat brain are decreased after long-term tricyclic antidepressant drug treatment. Brain Res 1981; 210:413–8.

    PubMed  CAS  Google Scholar 

  125. Mishra, R., A. Janowsky, and F. Sulser. Subsensitivity of the norepinephrine receptor-coupled adenylate cyclase system in brain: effects of nisoxetine versus fluoxetine. Eur J Pharmacol 1979; 60:379–82.

    PubMed  CAS  Google Scholar 

  126. Langer, S.Z. Presynaptic regulation of the release of catecholamines. Pharmacol Rev 1980; 32:337–62.

    PubMed  CAS  Google Scholar 

  127. Starke, K. Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 1977; 77:1–124.

    PubMed  CAS  Google Scholar 

  128. Starke, K. Presynaptic receptors. Annu Rev Pharmacol Toxicol 1981; 21:7–30.

    PubMed  CAS  Google Scholar 

  129. Westfall, T.C. Local regulation of adrenergic neurotransmission. Physiol Rev 1977; 57:659–728.

    PubMed  CAS  Google Scholar 

  130. Schweitzer, J.W., R. Schwartz, and A.J. Friedhoff. Intact presynaptic terminals required for beta-adrenergic receptor regulation by desipramine. J Neurochem 1979; 33:377–9.

    PubMed  CAS  Google Scholar 

  131. Elliott, J.M. Platelet receptor binding studies in affective disorders. J Affect Disord 1984; 6:219–39.

    PubMed  CAS  Google Scholar 

  132. Piletz, J.E., D.S. Schubert, and A. Halaris. Evaluation of studies on platelet alpha 2 adrenoreceptors in depressive illness. Life Sci 1986; 39:1589–616.

    PubMed  CAS  Google Scholar 

  133. Grant, J.A. and M.C. Scrutton. Novel alpha2-adrenorecep-tors primarily responsible for inducing human platelet aggregation. Nature 1979; 277:659–61.

    PubMed  CAS  Google Scholar 

  134. Jakobs, K.H., W. Saur, and G. Schultz. Metal and metal-ATP interactions with human platelet adenylate cyclase: effects of alpha adrenergic inhibition. Mol Pharmacol 1978; 14:1073–8.

    PubMed  CAS  Google Scholar 

  135. Kafka, M.S. and S.M. Paul. Platelet alpha 2-adrenergic receptors in depression. Arch Gen Psychiatry 1986; 43:91–5.

    PubMed  CAS  Google Scholar 

  136. Daiguji, M., H.Y. Meltzer, C. Tong, D.C. U'Prichard, M. Young, and H. Kravitz. alpha 2-Adrenergic receptors in platelet membranes of depressed patients: no change in number of 3H-yohimbine affinity. Life Sci 1981; 29:2059–64.

    PubMed  CAS  Google Scholar 

  137. Stahl, S.M., P.M. Lemoine, R.D. Ciaranello, and P.A. Berger. Platelet alpha 2-adrenergic receptor sensitivity in major depressive disorder. Psychiatry Res 1983; 10:157–64.

    PubMed  CAS  Google Scholar 

  138. Braddock, L., P.J. Cowen, J.M. Elliott, S. Fraser, and K. Stump. Binding of yohimbine and imipramine to platelets in depressive illness. Psychol Med 1986; 16:765–73.

    PubMed  CAS  Google Scholar 

  139. Lenox, R.H., J. Ellis, D.A. VanRiper, et al., Platelet alpha2-adrenergic receptor activity in clinical studies of depressions, in Frontiers in Neuropsychiatric Research, E. Usdin, M. Goldstein, and A. Friedhoff, Editors. 1983, MacMillan: New York, p. 331.

    Google Scholar 

  140. Smith, C.B., P.J. Hollingsworth, J.A. Garcia-Sevilla, and A.P. Zis. Platelet alpha 2 adrenoreceptors are decreased in number after antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry 1983; 7:241–7.

    PubMed  CAS  Google Scholar 

  141. Campbell, I.C., R.M. McKernan, S.A. Checkley, I.B. Glass, C. Thompson, and E. Shur. Characterization of platelet alpha 2 adrenoceptors and measurement in control and depressed subjects. Psychiatry Res 1985; 14:17–31.

    PubMed  CAS  Google Scholar 

  142. Wolfe, N., B.M. Cohen, and A.J. Gelenberg. Alpha 2-adren-ergic receptors in platelet membranes of depressed patients: increased affinity for 3H-yohimbine. Psychiatry Res 1987; 20:107–16.

    PubMed  CAS  Google Scholar 

  143. Pimoule, C., M.S. Briley, C. Gay, et al. 3H-Rauwolscine binding in platelets from depressed patients and healthy volunteers. Psychopharmacology (Berl) 1983; 79:308–12.

    CAS  Google Scholar 

  144. Healy, D., P.A. Carney, and B.E. Leonard. Monoamine-related markers of depression: changes following treatment. J Psychiatr Res 1982; 17:251–60.

    PubMed  Google Scholar 

  145. Wood, K. and A. Coppen. Peripheral alpha-adrenergic activity in the affective disorders. Adv Biochem Psychopharmacol 1982; 32:13–9.

    PubMed  CAS  Google Scholar 

  146. Siever, L.J., M.S. Kafka, S. Targum, and C.R. Lake. Platelet alpha-adrenergic binding and biochemical responsiveness in depressed patients and controls. Psychiatry Res 1984; 11:287–302.

    PubMed  CAS  Google Scholar 

  147. Garcia-Sevilla, J.A., J. Guimon, P. Garcia-Vallejo, and M.J. Fuster. Biochemical and functional evidence of supersensitive platelet alpha 2-adrenoceptors in major affective disorder. Effect of long-term lithium carbonate treatment. Arch Gen Psychiatry 1986; 43:51–7.

    PubMed  CAS  Google Scholar 

  148. Garcia-Sevilla, J.A. and M.J. Fuster. Labelling of human platelet alpha 2-adrenoceptors with the full agonist [3H](−) adrenaline. Eur J Pharmacol 1986; 124:31–41.

    PubMed  CAS  Google Scholar 

  149. Garcia-Sevilla, J.A., P.J. Hollingsworth, and C.B. Smnith. Alpha 2-adrenoreceptors on human platelets: selective labelling by [3H]clonidine and [3H]yohimbine and competitive inhibition by antidepressant drugs. Eur J Pharmacol 1981; 74:329–41.

    PubMed  CAS  Google Scholar 

  150. Garcia-Sevilla, J.A., A.P. Zis, P.J. Hollingsworth, J.F. Greden, and C.B. Smith. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment. Arch Gen Psychiatry 1981; 38:1327–33.

    PubMed  CAS  Google Scholar 

  151. Doyle, M.C., A.J. George, A.V. Ravindran, and R. Philpott. Platelet alpha 2-adrenoreceptor binding in elderly depressed patients. Am J Psychiatry 1985; 142:1489–90.

    PubMed  CAS  Google Scholar 

  152. Georgotas, A., J. Schweitzer, R.E. McCue, M. Armour, and A.J. Friedhoff. Clinical and treatment effects on 3H-clonidine and 3H-imipramine binding in elderly depressed patients. Life Sci 1987; 40:2137–43.

    PubMed  CAS  Google Scholar 

  153. Pandey, G.N., P.G. Janicak, J.I. Javaid, and J.M. Davis. Increased 3H-clonidine binding in the platelets of patients with depressive and schizophrenic disorders. Psychiatry Res 1989; 28:73–88.

    PubMed  CAS  Google Scholar 

  154. Carstens, M.E., A.H. Engelbrecht, V.A. Russell, et al. Alpha 2-adrenoceptor levels on platelets of patients with major depressive disorders. Psychiatry Res 1986; 18:321–31.

    PubMed  CAS  Google Scholar 

  155. Piletz, J.E. and A. Halaris. Super high affinity 3H-para-aminoclonidine binding to platelet adrenoceptors in depression. Prog Neuropsychopharmacol Biol Psychiatry 1988; 12:541–53.

    PubMed  CAS  Google Scholar 

  156. Garcia-Sevilla, J.A., C. Udina, M.J. Fuster, E. Alvarez, and M. Casas. Enhanced binding of [3H] (−) adrenaline to platelets of depressed patients with melancholia: effect of long-term clomipramine treatment. Acta Psychiatr Scand 1987; 75:150–7.

    PubMed  CAS  Google Scholar 

  157. Sacchetti, E., G. Conte, A. Pennati, A. Vita, A. Alciati, and C.L. Cazzullo. Platelet alpha 2-adrenoceptors in major depression: relationship with urinary 4-hydroxy-3-meth-oxyphenylglycol and age at onset. J Psychiatr Res 1985; 19:579–86.

    PubMed  CAS  Google Scholar 

  158. Healy, D., P.A. Carney, A. O'Halloran, and B.E. Leonard. Peripheral adrenoceptors and serotonin receptors in depression. Changes associated with response to treatment with trazodone or amitriptyline. J Affect Disord 1985; 9:285–96.

    PubMed  CAS  Google Scholar 

  159. Wang, Y.C., G.N. Pandey, J. Mendels, and A. Frazer. Platelet adenylate cyclase responses in depression: implications for a receptor defect. Psychopharmacologia 1974; 36:291–300.

    PubMed  CAS  Google Scholar 

  160. Murphy, D.L., C. Donnelly, and J. Moskowitz. Catecholamine receptor function in depressed patients. Am J Psychiatry 1974; 131:1389–91.

    PubMed  CAS  Google Scholar 

  161. Kanof, P.D., C. Johns, M. Davidson, L.J. Siever, E.F. Coccaro, and K.L. Davis. Prostaglandin receptor sensitivity in psychiatric disorders. Arch Gen Psychiatry 1986; 43:987–93.

    PubMed  CAS  Google Scholar 

  162. Kanof, P.D., C.A. Johns, M. Davidson, L.J. Siever, E.F. Coccaro, and K.L. Davis. Platelet alpha 2-adrenergic receptor function in psychiatric disorders. Psychiatry Res 1988; 23:11–22.

    PubMed  CAS  Google Scholar 

  163. Kafka, M.S. and D.P. van Kammen. alpha-Adrenergic receptor function in schizophrenia. Receptor number, cyclic adenosine monophosphate production, adenylate cyclase activity, and effect of drugs. Arch Gen Psychiatry 1983; 40:264–70.

    PubMed  CAS  Google Scholar 

  164. Rotrosen, J., A.D. Miller, D. Mandio, L.J. Traficante, and S. Gershon. Prostaglandins, platelets, and schizophrenia. Arch Gen Psychiatry 1980; 37:1047–54.

    PubMed  CAS  Google Scholar 

  165. Garver, D.L., C. Johnson, and D.R. Kanter. Schizophrenia and reduced cyclic AMP production: evidence for the role of receptor-linked events. Life Sci 1982; 31:1987–92.

    PubMed  CAS  Google Scholar 

  166. Matussek, N., M. Ackenheil, H. Hippius, et al. Effect of clonidine on growth hormone release in psychiatric patients and controls. Psychiatry Res 1980; 2:25–36.

    PubMed  CAS  Google Scholar 

  167. Siever, L.J., T.W. Uhde, and D.L. Murphy. Possible subsensitization of alpha 2-adrenergic receptors by chronic mono-amine oxidase inhibitor treatment in psychiatric patients. Psychiatry Res 1982; 6:293–302.

    PubMed  CAS  Google Scholar 

  168. Checkley, S.A., A.P. Slade, and E. Shur. Growth hormone and other responses to clonidine in patients with endogenous depression. Br J Psychiatry 1981; 138:51–5.

    PubMed  CAS  Google Scholar 

  169. Heninger, G.R., D.S. Charney, and L.H. Price. alpha 2-Adrenergic receptor sensitivity in depression. The plasma MHPG, behavioral, and cardiovascular responses to yohim-bine. Arch Gen Psychiatry 1988; 45:718–26.

    PubMed  CAS  Google Scholar 

  170. Price, L.H., D.S. Charney, A.L. Rubin, and G.R. Heninger. Alpha 2-adrenergic receptor function in depression. The cortisol response to yohimbine. Arch Gen Psychiatry 1986; 43:849–58.

    PubMed  CAS  Google Scholar 

  171. Brodde, O.E., M. Anlauf, J. Arroyo, R. Wagner, F. Weber, and K.D. Buck. Hypersensitivity of adrenergic receptors and blood-pressure response to oral yohimbine in orthostatic hypotension. N Engl J Med 1983; 308:1033–4.

    PubMed  CAS  Google Scholar 

  172. Sulser, F. New perspectives on the mode of action of anti-depressant drugs. TIPS 1979; 92–94.

    Google Scholar 

  173. Pandey, G.N. and J.M. Davis. Treatment with antidepressants and down-regulation of beta-adrenergic receptors. Drug Dev Res 1983; 13:393–406.

    Google Scholar 

  174. Pandey, G.N., B.D. Brown, and J.M. Davis. Effect of treatment with some atypical antidepressants on 3H-DHA binding in rat brain. Drug Dev Res 1985; 5:251–59.

    CAS  Google Scholar 

  175. Stahl, S.M. Peripheral models for the study of neurotrans-mitter receptors in man. Psychopharmacol Bull 1985; 21:663–71.

    PubMed  CAS  Google Scholar 

  176. Pandey, G.N., P.G. Janicak, and J.M. Davis. Decreased beta-adrenergic receptors in the leukocytes of depressed patients. Psychiatry Res 1987; 22:265–73.

    PubMed  CAS  Google Scholar 

  177. Klysner, R., A. Geisler, and R. Rosenberg. Enhanced histamine- and beta-adrenoceptor-mediated cyclic AMP formation in leukocytes from patients with endogenous depression. J Affect Disord 1987; 13:227–32.

    PubMed  CAS  Google Scholar 

  178. Ebstein, R.P., B. Lerer, E.R. Bennett, et al. Lithium modulation of second messenger signal amplification in man: inhibition of phosphatidylinositol-specific phospholipase C and adenylate cyclase activity. Psychiatry Res 1988; 24:45–52.

    PubMed  CAS  Google Scholar 

  179. Spitzer, R.L., J. Endicott, and E. Robins. Research diagnostic criteria: rationale and reliability. Arch Gen Psychiatry 1978; 35:773–82.

    PubMed  CAS  Google Scholar 

  180. Kanof, P.D., E.F. Coccaro, C.A. Johns, M. Davidson, L.J. Siever, and K.L. Davis. Cyclic-AMP production by poly-morphonuclear leukocytes in psychiatric disorders. Biol Psychiatry 1989; 25:413–20.

    PubMed  CAS  Google Scholar 

  181. Williams, L.T., R. Snyderman, and R.J. Lefkowitz. Identification of beta-adrenergic receptors in human lymphocytes by (−) (3H) alprenolol binding. J Clin Invest 1976; 57:149–55.

    PubMed  CAS  Google Scholar 

  182. Brodde, O.E., G. Engel, D. Hoyer, K.D. Bock, and F. Weber. The beta-adrenergic receptor in human lymphocytes: subclassification by the use of a new radioligand (+/−)-125 Iodocyanopindolol. Life Sci 1981; 29:2189–98.

    PubMed  CAS  Google Scholar 

  183. O'Hara, N. and O.E. Brodde. Identical binding properties of (+/−)- and (−)-125Iodocyanopindolol to beta 2-adreno-ceptors in intact human lymphocytes. Arch Int Pharmacodyn Ther 1984; 272:24–39.

    PubMed  Google Scholar 

  184. Carstens, M.E., A.H. Engelbrecht, V.A. Russell, et al. Beta-adrenoceptors on lymphocytes of patients with major depressive disorder. Psychiatry Res 1987; 20:239–48.

    PubMed  CAS  Google Scholar 

  185. Magliozzi, J.R., D. Gietzen, R.J. Maddock, et al. Lymphocyte beta-adrenoreceptor density in patients with unipolar depression and normal controls. Biol Psychiatry 1989; 26:15–25.

    PubMed  CAS  Google Scholar 

  186. Wright, A.F., D.N. Crichton, J.B. Loudon, J.E. Morten, and C.M. Steel. Beta-adrenoceptor binding defects in cell lines from families with manic-depressive disorder. Ann Hum Genet 1984; 48:201–14.

    PubMed  CAS  Google Scholar 

  187. Abdel-Latif, A.A. Calcium-mobilizing receptors, polyphos-phoinositides, and the generation of second messengers. Pharmacol Rev 1986; 38:227–72.

    PubMed  CAS  Google Scholar 

  188. Berridge, M.J. and R.F. Irvine. Inositol phosphates and cell signalling. Nature 1989; 341:197–205.

    PubMed  CAS  Google Scholar 

  189. Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988; 334:661–5.

    PubMed  CAS  Google Scholar 

  190. Nishizuka, Y. Intracellular signaling by hydrolysis of phos-pholipids and activation of protein kinase C. Science 1992; 258:607–14.

    PubMed  CAS  Google Scholar 

  191. Jope, R.S., L. Song, P.P. Li, et al. The phosphoinositide signal transduction system is impaired in bipolar affective disorder brain. J Neurochem 1996; 66:2402–9.

    PubMed  CAS  Google Scholar 

  192. Pacheco, M.A. and R.S. Jope. Phosphoinositide signaling in human brain. Prog Neurobiol 1996; 50:255–73.

    PubMed  CAS  Google Scholar 

  193. Pacheco, M.A., C. Stockmeier, H.Y. Meltzer, J.C. Overholser, G.E. Dilley, and R.S. Jope. Alterations in phos-phoinositide signaling and G-protein levels in depressed suicide brain. Brain Res 1996; 723:37–45.

    PubMed  CAS  Google Scholar 

  194. Karege, F., P. Bovier, W. Rudolph, and J.M. Gaillard. Platelet phosphoinositide signaling system: an overstimulated pathway in depression. Biol Psychiatry 1996; 39:697–702.

    PubMed  CAS  Google Scholar 

  195. Pandey, G.N., S.C. Pandey, and J.M. Davis. Peripheral adrenergic receptors in affective illness and schizophrenia. Pharmacol Toxicol 1990; 66 (Suppl 3):13–36.

    PubMed  CAS  Google Scholar 

  196. Pandey, G.N., X. Ren, S.C. Pandey, Y. Dwivedi, R. Sharma, and P.G. Janicak. Hyperactive phosphoinositide signaling pathway in platelets of depressed patients: effect of desip-ramine treatment. Psychiatry Res 2001; 105:23–32.

    PubMed  CAS  Google Scholar 

  197. Bezchlibnyk, Y. and L.T. Young. The neurobiology of bipolar disorder: focus on signal transduction pathways and the regulation of gene expression. Can J Psychiatry 2002; 47:135–48.

    PubMed  Google Scholar 

  198. Avissar, S., Y. Nechamkin, L. Barki-Harrington, G. Roitman, and G. Schreiber. Differential G protein measures in mononuclear leukocytes of patients with bipolar mood disorder are state dependent. J Affect Disord 1997; 43:85–93.

    PubMed  CAS  Google Scholar 

  199. Mitchell, P.B., H.K. Manji, G. Chen, et al. High levels of Gs alpha in platelets of euthymic patients with bipolar affective disorder. Am J Psychiatry 1997; 154:218–23.

    PubMed  CAS  Google Scholar 

  200. Pandey, G.N., Y. Dwivedi, S.C. Pandey, et al. Low phos-phoinositide-specific phospholipase C activity and expression of phospholipase C beta1 protein in the prefrontal cortex of teenage suicide subjects. Am J Psychiatry 1999; 156:1895–901.

    PubMed  CAS  Google Scholar 

  201. Friedman, E., W. Hoau Yan, D. Levinson, T.A. Connell, and H. Singh. Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol Psychiatry 1993; 33:520–5.

    PubMed  CAS  Google Scholar 

  202. Wang, H.Y., P. Markowitz, D. Levinson, A.S. Undie, and E. Friedman. Increased membrane-associated protein kinase C activity and translocation in blood platelets from bipolar affective disorder patients. J Psychiatr Res 1999; 33:171–9.

    PubMed  CAS  Google Scholar 

  203. Manji, H.K., R. Etcheberrigaray, G. Chen, and J.L. Olds. Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J Neurochem 1993; 61:2303–10.

    PubMed  CAS  Google Scholar 

  204. Manji, H.K., W.Z. Potter, and R.H. Lenox. Signal transduction pathways. Molecular targets for lithium's actions. Arch Gen Psychiatry 1995; 52:531–43.

    PubMed  CAS  Google Scholar 

  205. Manji, H.K. and R.H. Lenox. Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999; 46:1328–51.

    PubMed  CAS  Google Scholar 

  206. Lenox, R.H. and H.K. Manji, Lithium, in American Psychiatric Press Textbook of Psychopharmacology, 2nd ed., A.F. Schatzberg and C.B. Nemeroff, Editors. 1998, American Psychiatric Press: Washington, DC, pp. 379–429.

    Google Scholar 

  207. Ikonomov, O.C. and H.K. Manji. Molecular mechanisms underlying mood stabilization in manic-depressive illness: the phenotype challenge. Am J Psychiatry 1999; 156:1506–14.

    PubMed  CAS  Google Scholar 

  208. Jope, R.S. Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry 1999; 4:117–28.

    PubMed  CAS  Google Scholar 

  209. Pandey, G.N., Y. Dwivedi, J. SridharaRao, X. Ren, P.G. Janicak, and R. Sharma. Protein kinase C and phospholipase C activity and expression of their specific isozymes is decreased and expression of MARCKS is increased in platelets of bipolar but not in unipolar patients. Neuropsy-chopharmacology 2002; 26:216–28.

    CAS  Google Scholar 

  210. Aderem, A. The MARCKS brothers: a family of protein kinase C substrates. Cell 1992; 71:713–6.

    PubMed  CAS  Google Scholar 

  211. Blackshear, P.J. The MARCKS family of cellular protein kinase C substrates. J Biol Chem 1993; 268:1501–4.

    PubMed  CAS  Google Scholar 

  212. Watson, D.G. and R.H. Lenox. Chronic lithiuminduced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem 1996; 67:767–77.

    PubMed  CAS  Google Scholar 

  213. Watson, D.G., B.H. Wainer, and R.H. Lenox. Phorbol ester-and retinoic acid-induced regulation of the protein kinase C substrate MARCKS in immortalized hippocampal cells. J Neurochem 1994; 63:1666–74.

    PubMed  CAS  Google Scholar 

  214. McNamara, R.K., T.M. Hyde, J.E. Kleinman, and R.H. Lenox. Expression of the myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) in the prefrontal cortex and hippocampus of suicide victims. J Clin Psychiatry 1999; 60 (Suppl 2):21–6; discussion 40–1, 113–6.

    PubMed  Google Scholar 

  215. Wang, L., D.G. Watson, and R.H. Lenox. Myristoylation alters retinoic acid-induced down-regulation of MARCKS in immortalized hippocampal cells. Biochem Biophys Res Commun 2000; 276:183–8.

    PubMed  CAS  Google Scholar 

  216. Pandey, G.N., Y. Dwivedi, X. Ren, et al. Altered expression and phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) in postmortem brain of suicide victims with or without depression. J Psychiatr Res 2003; 37:421–32.

    PubMed  Google Scholar 

  217. Pandey, G.N. and Y. Dwivedi. Focus on protein kinase A and protein kinase C, critical components of signal transduction system, in mood disorders and suicide. Int J Neuropsychopharmacol 2005; 8:1–4.

    PubMed  CAS  Google Scholar 

  218. Dwivedi, Y., R.R. Conley, R.C. Roberts, C.A. Tamminga, and G.N. Pandey. [(3)H]cAMP binding sites and protein kinase a activity in the prefrontal cortex of suicide victims. Am J Psychiatry 2002; 159:66–73.

    PubMed  Google Scholar 

  219. Dwivedi, Y., H.S. Rizavi, P.K. Shukla, et al. Protein kinase A in postmortem brain of depressed suicide victims: altered expression of specific regulatory and catalytic subunits. Biol Psychiatry 2004; 55:234–43.

    PubMed  CAS  Google Scholar 

  220. Shelton, R.C., D.H. Mainer, and F. Sulser. cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 1996; 153:1037–42.

    PubMed  CAS  Google Scholar 

  221. Manier, D.H., A. Eiring, R.C. Shelton, and F. Sulser. Beta-adrenoceptor-linked protein kinase A (PKA) activity in human fibroblasts from normal subjects and from patients with major depression. Neuropsychopharmacology 1996; 15:555–61.

    PubMed  CAS  Google Scholar 

  222. Manier, D.H., R.C. Shelton, T.C. Ellis, C.S. Peterson, A. Eiring, and F. Sulser. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord 2000; 61:51–8.

    PubMed  CAS  Google Scholar 

  223. Rahman, S., P.P. Li, L.T. Young, O. Kofman, S.J. Kish, and J.J. Warsh. Reduced [3H]cyclic AMP binding in postmortem brain from subjects with bipolar affective disorder. J Neurochem 1997; 68:297–304.

    PubMed  CAS  Google Scholar 

  224. Fields, A., P.P. Li, S.J. Kish, and J.J. Warsh. Increased cyclic AMP-dependent protein kinase activity in postmortem brain from patients with bipolar affective disorder. J Neurochem 1999; 73:1704–10.

    PubMed  CAS  Google Scholar 

  225. Perez, J., D. Tardito, G. Racagni, E. Smeraldi, and R. Zanardi. Protein kinase A and Rap1 levels in platelets of untreated patients with major depression. Mol Psychiatry 2001; 6:44–9.

    PubMed  CAS  Google Scholar 

  226. Chang, A., P.P. Li, and J.J. Warsh. cAMP-Dependent protein kinase (PKA) subunit mRNA levels in postmortem brain from patients with bipolar affective disorder (BD). Brain Res Mol Brain Res 2003; 116:27–37.

    PubMed  CAS  Google Scholar 

  227. Karege, F., M. Schwald, P. Papadimitriou, C. Lachausse, and M. Cisse. The cAMP-dependent protein kinase A and brain-derived neurotrophic factor expression in lympho-blast cells of bipolar affective disorder. J Affect Disord 2004; 79:187–92.

    PubMed  CAS  Google Scholar 

  228. Karege, F., C. Lambercy, M. Schwald, T. Steimer, and M. Cisse. Differential changes of cAMP-dependent protein kinase activity and 3H-cAMP binding sites in rat hippocampus during maturation and aging. Neurosci Lett 2001; 315:89–92.

    PubMed  CAS  Google Scholar 

  229. Huang, E.J. and L.F. Reichardt. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24:677–736.

    PubMed  CAS  Google Scholar 

  230. Altar, C.A., N. Cai, T. Bliven, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997; 389:856–60.

    PubMed  CAS  Google Scholar 

  231. Bartrup, J.T., J.M. Moorman, and N.R. Newberry. BDNF enhances neuronal growth and synaptic activity in hip-pocampal cell cultures. Neuroreport 1997; 8:3791–4.

    PubMed  CAS  Google Scholar 

  232. Kang, H. and E.M. Schuman. Long-lasting neurotrophininduced enhancement of synaptic transmission in the adult hippocampus. Science 1995; 267:1658–62.

    PubMed  CAS  Google Scholar 

  233. Schinder, A.F. and M. Poo. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 2000; 23:639–45.

    PubMed  CAS  Google Scholar 

  234. Thoenen, H. Neurotrophins and neuronal plasticity. Science 1995; 270:593–8.

    PubMed  CAS  Google Scholar 

  235. Duman, R.S., S. Nakagawa, and J. Malberg. Regulation of adult neurogenesis by antidepressant treatment. Neuropsy-chopharmacology 2001; 25:836–44.

    CAS  Google Scholar 

  236. Leibenluft, E., B.A. Rich, D.T. Vinton, et al. Neural circuitry engaged during unsuccessful motor inhibition in pediatric bipolar disorder. Am J Psychiatry 2007; 164:52–60.

    PubMed  Google Scholar 

  237. Pavuluri, M.N., M.M. O'Connor, E. Harral, and J.A. Sweeney. Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol Psychiatry 2007; 62:158–67.

    Google Scholar 

  238. Pearlson, G.D. Structural and functional brain changes in bipolar disorder: a selective review. Schizophr Res 1999; 39:133–40; discussion 162.

    PubMed  CAS  Google Scholar 

  239. Pearlson, G.D. and A.E. Veroff. Computerised tomographic scan changes in manic-depressive illness. Lancet 1981; 2:470.

    PubMed  CAS  Google Scholar 

  240. Rajkowska, G. Cell pathology in mood disorders. Semin Clin Neuropsychiatry 2002; 7:281–92.

    PubMed  Google Scholar 

  241. Rajkowska, G. Cell pathology in bipolar disorder. Bipolar Disord 2002; 4:105–16.

    PubMed  Google Scholar 

  242. Altar, C.A., R.E. Whitehead, R. Chen, G. Wortwein, and T.M. Madsen. Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 2003; 54:703–9.

    PubMed  CAS  Google Scholar 

  243. Chen, B., D. Dowlatshahi, G.M. MacQueen, J.F. Wang, and L.T. Young. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50:260–5.

    PubMed  CAS  Google Scholar 

  244. Duman, R.S. and V.A. Vaidya. Molecular and cellular actions of chronic electroconvulsive seizures. J ECT 1998; 14:181–93.

    PubMed  CAS  Google Scholar 

  245. Fukumoto, T., S. Morinobu, Y. Okamoto, A. Kagaya, and S. Yamawaki. Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berl) 2001; 158:100–6.

    CAS  Google Scholar 

  246. Gonul, A.S., F. Akdeniz, F. Taneli, O. Donat, C. Eker, and S. Vahip. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005; 255:381–6.

    PubMed  Google Scholar 

  247. Hashimoto, R., N. Takei, K. Shimazu, L. Christ, B. Lu, and D.M. Chuang. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 2002; 43:1173–9.

    PubMed  CAS  Google Scholar 

  248. Karege, F., G. Vaudan, M. Schwald, N. Perroud, and R. La Harpe. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Research. Mol Brain Res 2005; 136:29–37.

    PubMed  CAS  Google Scholar 

  249. Nibuya, M., S. Morinobu, and R.S. Duman. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15:7539–47.

    PubMed  CAS  Google Scholar 

  250. Shimizu, E., K. Hashimoto, N. Okamura, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003; 54:70–5.

    PubMed  CAS  Google Scholar 

  251. Malone, K.M., G.L. Haas, J.A. Sweeney, and J.J. Mann. Major depression and the risk of attempted suicide. J Affect Disord 1995; 34:173–85.

    PubMed  CAS  Google Scholar 

  252. Paykel, E.S. Life stress, depression and attempted suicide. J Hum Stress 1976; 2:3–12.

    CAS  Google Scholar 

  253. Westrin, A. Stress system alterations and mood disorders in suicidal patients. A review. Biomed Pharmacother 2000; 54:142–5.

    PubMed  CAS  Google Scholar 

  254. Smith, M.A., S. Makino, R. Kvetnansky, and R.M. Post. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15:1768–77.

    PubMed  CAS  Google Scholar 

  255. Ueyama, T., Y. Kawai, K. Nemoto, M. Sekimoto, S. Tone, and E. Senba. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 1997; 28:103–10.

    PubMed  CAS  Google Scholar 

  256. Dwivedi, Y., H.S. Rizavi, R.R. Conley, R.C. Roberts, C.A. Tamminga, and G.N. Pandey. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003; 60:804–15.

    PubMed  CAS  Google Scholar 

  257. Karege, F., G. Perret, G. Bondolfi, M. Schwald, G. Bertschy, and J.M. Aubry. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109:143–8.

    PubMed  CAS  Google Scholar 

  258. Shimizu, E., K. Hashimoto, N. Okamura, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003; 54:70–5.

    PubMed  CAS  Google Scholar 

  259. Cunha, A.B., B.N. Frey, A.C. Andreazza, et al. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett 2006; 398:215–9.

    PubMed  CAS  Google Scholar 

  260. Machado-Vieira, R., M.O. Dietrich, R. Leke, et al. Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. Biol Psychiatry 2007; 61:142–4.

    PubMed  CAS  Google Scholar 

  261. Pandey, G.N., H.S. Rizavi, Y. Dwivedi, and M.N. Pavuluri. Brain-derived neurotrophic factor gene expression in pediatric bipolar disorder: effects of treatment and clinical response. J Am Acad Child Adolesc Psychiatry 2008; 47:1077–85.

    PubMed  Google Scholar 

  262. Karege, F., M. Schwald, and M. Cisse. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 2002; 328:261–4.

    PubMed  CAS  Google Scholar 

  263. Kabiersch, A., A. del Rey, C.G. Honegger, and H.O. Besedovsky. Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav Immun 1988; 2:267–74.

    PubMed  CAS  Google Scholar 

  264. Morikawa, O., N. Sakai, H. Obara, and N. Saito. Effects of interferon-alpha, interferon-gamma and cAMP on the transcriptional regulation of the serotonin transporter. Eur J Pharmacol 1998; 349:317–24.

    PubMed  CAS  Google Scholar 

  265. Myint, A.M. and Y.K. Kim. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 2003; 61:519–25.

    PubMed  CAS  Google Scholar 

  266. Zalcman, S., J.M. Green-Johnson, L. Murray, et al. Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 1994; 643:40–9.

    PubMed  CAS  Google Scholar 

  267. Anisman, H., L. Kokkinidis, and Z. Merali. Further evidence for the depressive effects of cytokines: anhedonia and neurochemical changes. Brain Behav Immun 2002; 16:544–56.

    PubMed  CAS  Google Scholar 

  268. Hopkins, S.J. and N.J. Rothwell. Cytokines and the nervous system. I: expression and recognition. Trends Neurosci 1995; 18:83–8.

    PubMed  CAS  Google Scholar 

  269. Kronfol, Z. and D.G. Remick. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 2000; 157:683–94.

    PubMed  CAS  Google Scholar 

  270. Muller, N. and M. Ackenheil. Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:1–33.

    PubMed  CAS  Google Scholar 

  271. Bonaccorso, S., V. Marino, M. Biondi, F. Grimaldi, F. Ippoliti, and M. Maes. Depression induced by treatment with interfer-on-alpha in patients affected by hepatitis C virus. J Affect Disord 2002; 72:237–41.

    PubMed  CAS  Google Scholar 

  272. Bonaccorso, S., V. Marino, A. Puzella, et al. Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 2002; 22:86–90.

    PubMed  CAS  Google Scholar 

  273. Bonaccorso, S., A. Puzella, V. Marino, et al. Immunotherapy with interferon-alpha in patients affected by chronic hepatitis C induces an intercorrelated stimulation of the cytokine network and an increase in depressive and anxiety symptoms. Psychiatry Res 2001; 105:45–55.

    PubMed  CAS  Google Scholar 

  274. Collier, J. and R. Chapman. Combination therapy with interferon-alpha and ribavirin for hepatitis C: practical treatment issues. BioDrugs 2001; 15:225–38.

    PubMed  CAS  Google Scholar 

  275. Hunt, C.M., J.A. Dominitz, B.P. Bute, B. Waters, U. Blasi, and D.M. Williams. Effect of interferon-alpha treatment of chronic hepatitis C on health-related quality of life. Dig Dis Sci 1997; 42:2482–6.

    PubMed  CAS  Google Scholar 

  276. Loftis, J.M. and P. Hauser. The phenomenology and treatment of interferon-induced depression. J Affect Disord 2004; 82:175–90.

    PubMed  CAS  Google Scholar 

  277. Malaguarnera, M., I. Di Fazio, S. Restuccia, G. Pistone, L. Ferlito, and L. Rampello. Interferon alpha-induced depression in chronic hepatitis C patients: comparison between different types of interferon alpha. Neuropsychobiology 1998; 37:93–7.

    PubMed  CAS  Google Scholar 

  278. Pariante, C.M., M.G. Orru, A. Baita, M.G. Farci, and B. Carpiniello. Treatment with interferon-alpha in patients with chronic hepatitis and mood or anxiety disorders. Lancet 1999; 354:131–2.

    PubMed  CAS  Google Scholar 

  279. Pavol, M.A., C.A. Meyers, J.L. Rexer, A.D. Valentine, P.J. Mattis, and M. Talpaz. Pattern of neurobehavioral deficits associated with interferon alfa therapy for leukemia. Neurology 1995; 45:947–50.

    PubMed  CAS  Google Scholar 

  280. Renault, P.F., J.H. Hoofnagle, Y. Park, et al. Psychiatric complications of long-term interferon alfa therapy. Arch Intern Med 1987; 147:1577–80.

    PubMed  CAS  Google Scholar 

  281. Valentine, A.D., C.A. Meyers, M.A. Kling, E. Richelson, and P. Hauser. Mood and cognitive side effects of interfer-on-alpha therapy. Semin Oncol 1998; 25:39–47.

    PubMed  CAS  Google Scholar 

  282. Yirmiya, R., J. Weidenfeld, Y. Pollak, et al. Cytokines, “depression due to a general medical condition,” and anti-depressant drugs. Adv Exp Med Biol 1999; 461:283–316.

    PubMed  CAS  Google Scholar 

  283. Anisman, H., A.V. Ravindran, J. Griffiths, and Z. Merali. Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Mol Psychiatry 1999; 4:182–8.

    PubMed  CAS  Google Scholar 

  284. Berk, M., A.A. Wadee, R.H. Kuschke, and A. O'Neill-Kerr. Acute phase proteins in major depression. J Psychosom Res 1997; 43:529–34.

    PubMed  CAS  Google Scholar 

  285. Kim, Y.K., I.B. Suh, H. Kim, et al. The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Mol Psychiatry 2002; 7:1107–14.

    PubMed  CAS  Google Scholar 

  286. Kubera, M., G. Kenis, E. Bosmans, et al. Plasma levels of interleukin-6, interleukin-10, and interleukin-1 receptor antagonist in depression: comparison between the acute state and after remission. Pol J Pharmacol 2000; 52:237–41.

    PubMed  CAS  Google Scholar 

  287. Maes, M. Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19:11–38.

    PubMed  CAS  Google Scholar 

  288. Maes, M., E. Bosmans, R. De Jongh, G. Kenis, E. Vandoolaeghe, and H. Neels. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 1997; 9:853–8.

    PubMed  CAS  Google Scholar 

  289. Maes, M., H.Y. Meltzer, E. Bosmans, et al. Increased plasma concentrations of interleukin-6, soluble interleu-kin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 1995; 34:301–9.

    PubMed  CAS  Google Scholar 

  290. Maes, M., E. Vandoolaeghe, R. Ranjan, E. Bosmans, R. Bergmans, and R. Desnyder. Increased serum interleukin-1-receptor-antagonist concentrations in major depression. J Affect Disord 1995; 36:29–36.

    PubMed  CAS  Google Scholar 

  291. Musselman, D.L., A.H. Miller, M.R. Porter, et al. Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. Am J Psychiatry 2001; 158:1252–7.

    PubMed  CAS  Google Scholar 

  292. Nassberger, L. and L. Traskman-Bendz. Increased soluble interleukin-2 receptor concentrations in suicide attempters. Acta Psychiatr Scand 1993; 88:48–52.

    PubMed  CAS  Google Scholar 

  293. O'Brien, S.M., L.V. Scott, and T.G. Dinan. Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum Psychopharmacol 2004; 19:397–403.

    PubMed  Google Scholar 

  294. Sluzewska, A., J. Rybakowski, E. Bosmans, et al. Indicators of immune activation in major depression. Psychiatry Res 1996; 64:161–7.

    PubMed  CAS  Google Scholar 

  295. Song, C., T. Dinan, and B.E. Leonard. Changes in immunoglobulin, complement and acute phase protein levels in the depressed patients and normal controls. J Affect Disord 1994; 30:283–8.

    PubMed  CAS  Google Scholar 

  296. Thomas, A.J., S. Davis, C. Morris, E. Jackson, R. Harrison, and J.T. O'Brien. Increase in interleukin-1beta in late-life depression. Am J Psychiatry 2005; 162:175–7.

    PubMed  Google Scholar 

  297. Tuglu, C., S.H. Kara, O. Caliyurt, E. Vardar, and E. Abay. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psycho-pharmacology (Berl) 2003; 170:429–33.

    CAS  Google Scholar 

  298. Weisse, C.S. Depression and immunocompetence: a review of the literature. Psychol Bull 1992; 111:475–89.

    PubMed  CAS  Google Scholar 

  299. Carpenter, L.L., G.R. Heninger, R.T. Malison, A.R. Tyrka, and L.H. Price. Cerebrospinal fluid interleukin (IL)-6 in unipolar major depression. J Affect Disord 2004; 79:285–9.

    PubMed  CAS  Google Scholar 

  300. Minami, M., Y. Kuraishi, T. Yamaguchi, S. Nakai, Y. Hirai, and M. Satoh. Immobilization stress induces interleukin-1 beta mRNA in the rat hypothalamus. Neurosci Lett 1991; 123:254–6.

    PubMed  CAS  Google Scholar 

  301. Anisman, H. and Z. Merali. Cytokines, stress, and depressive illness. Brain Behav Immun 2002; 16:513–24.

    PubMed  CAS  Google Scholar 

  302. Connor, T.J. and B.E. Leonard. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 1998; 62:583–606.

    PubMed  CAS  Google Scholar 

  303. Leonard, B.E. and C. Song. Stress, depression, and the role of cytokines. Adv Exp Med Biol 1999; 461:251–65.

    PubMed  CAS  Google Scholar 

  304. Merali, Z., S. Lacosta, and H. Anisman. Effects of interleukin-1beta and mild stress on alterations of norepinephrine, dop-amine and serotonin neurotransmission: a regional microdialysis study. Brain Res 1997; 761:225–35.

    PubMed  CAS  Google Scholar 

  305. Tilders, F.J. and E.D. Schmidt. Cross-sensitization between immune and non-immune stressors. A role in the etiology of depression? Adv Exp Med Biol 1999; 461:179–97.

    CAS  Google Scholar 

  306. Kronfol, Z., J. Silva, Jr., J. Greden, S. Dembinski, R. Gardner, and B. Carroll. Impaired lymphocyte function in depressive illness. Life Sci 1983; 33:241–7.

    PubMed  CAS  Google Scholar 

  307. Calabrese, J.R., R.G. Skwerer, B. Barna, et al. Depression, immunocompetence, and prostaglandins of the E series. Psychiatry Res 1986; 17:41–7.

    PubMed  CAS  Google Scholar 

  308. Maes, M., E. Bosmans, E. Suy, C. Vandervorst, C. DeJonckheere, and J. Raus. Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1 beta and soluble interleukin-2 receptor production. Acta Psychiatr Scand 1991; 84:379–86.

    PubMed  CAS  Google Scholar 

  309. Herberman, R.B. Effect of alpha-interferons on immune function. Semin Oncol 1997; 24:S 9–78–S 9–80.

    Google Scholar 

  310. Irwin, M. and J.C. Gillin. Impaired natural killer cell activity among depressed patients. Psychiatry Res 1987; 20:181–2.

    PubMed  CAS  Google Scholar 

  311. Herbert, T.B. and S. Cohen. Depression and immunity: a meta-analytic review. Psychol Bull 1993; 113:472–86.

    PubMed  CAS  Google Scholar 

  312. Irwin, M. Immune correlates of depression. Adv Exp Med Biol 1999; 461:1–24.

    PubMed  CAS  Google Scholar 

  313. Capuron, L., C.L. Raison, D.L. Musselman, D.H. Lawson, C.B. Nemeroff, and A.H. Miller. Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am J Psychiatry 2003; 160:1342–5.

    PubMed  Google Scholar 

  314. Maes, M., S. Scharpe, H.Y. Meltzer, et al. Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res 1993; 49:11–27.

    PubMed  CAS  Google Scholar 

  315. Carroll, B.J. The dexamethasone suppression test for melancholia. Br J Psychiatry 1982; 140:292–304.

    PubMed  CAS  Google Scholar 

  316. Maes, M. Major depression and activation of the inflammatory response system. Adv Exp Med Biol 1999; 461:25–46.

    PubMed  CAS  Google Scholar 

  317. Connor, T.J., C. Song, B.E. Leonard, Z. Merali, and H. Anisman. An assessment of the effects of central inter-leukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 1998; 84:923–33.

    PubMed  CAS  Google Scholar 

  318. Yirmiya, R. Endotoxin produces a depressive-like episode in rats. Brain Res 1996; 711:163–74.

    PubMed  CAS  Google Scholar 

  319. Trzonkowski, P., J. Mysliwska, B. Godlewska, et al. Immune consequences of the spontaneous pro-inflammatory status in depressed elderly patients. Brain Behav Immun 2004; 18:135–48.

    PubMed  CAS  Google Scholar 

  320. Frommberger, U.H., J. Bauer, P. Haselbauer, A. Fraulin, D. Riemann, and M. Berger. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 1997; 247:228–33.

    PubMed  CAS  Google Scholar 

  321. Sluzewska, A., J.K. Rybakowski, M. Laciak, A. Mackiewicz, M. Sobieska, and K. Wiktorowicz. Interleukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Ann N Y Acad Sci 1995; 762:474–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pandey, G.N., Dwivedi, Y. (2009). Peripheral Biological Markers for Mood Disorders. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9838-3_9

Download citation

Publish with us

Policies and ethics