Neuroimaging Biomarkers for Bipolar Disorder Across the Lifespan

  • Nick C. Patel
  • Michael A. Cerullo
  • David E. Fleck
  • Jayasree J. Nandagopal
  • Caleb M. Adler
  • Stephen M. Strakowski
  • Melissa P. DelBello


Bipolar disorder, characterized by recurrent episodes of mania and commonly depression, is a debilitating mental illness that affects millions of children, adolescents, and adults worldwide. Individuals with bipolar disorder often exhibit symptomatology found in other psychiatric disorders, which may lead to misdi-agnosis. Approximately half of bipolar patients respond to monotherapy of any single agent and often combinations of medications are necessary in order to achieve optimal mood stabilization. Therefore, strategies to improve the accuracy of diagnosis and selection of appropriate treatment modalities are critical to improve the outcome for individuals with bipolar disorder. One such strategy is the identification of biomarkers through the use of neuroimaging techniques, including structural neuroimaging, diffusion tension imaging, functional magnetic resonance imaging, and magnetic resonance spectroscopy. Neuroimaging studies in bipolar disorder have furthered our understanding of the neuropathophys-iology of the illness across the lifespan as well as the neurochemical effects of medications commonly used for mood stabilization. In this chapter, we review the existing neuroimaging literature, focusing on anatomical, functional, and biochemical abnormalities observed in individuals with bipolar disorder that may serve as biomarkers for the illness and treatment response. Future neuroimaging research in bipolar disorder should aim to address current methodological limitations and identify reliable biomarkers that may lead to improved diagnostic accuracy and early, targeted treatment interventions in order to improve patient outcome.


Bipolar disorder structural neuroimaging diffusion tension imaging functional magnetic resonance imaging magnetic resonance spectroscopy mood stabilizers antipsychotics children adolescents adults 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    APA, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Washington, DC: American Psychiatric Press; 2000.Google Scholar
  2. 2.
    Baethge C, Baldessarini RJ, Khalsa HM, Hennen J, Salvatore P, Tohen M. Substance abuse in first-episode bipolar I disorder: indications for early intervention. Am J Psychiat 2005;162:1008–1010.PubMedGoogle Scholar
  3. 3.
    McElroy SL, Altshuler LL, Suppes T, Keck PE, Jr., Frye MA, Denicoff KD, et al. Axis I psychiatric comorbidity and its relationship to historical illness variables in 288 patients with bipolar disorder. Am J Psychiat 2001;158:420–426.PubMedGoogle Scholar
  4. 4.
    Valtonen H, Suominen K, Mantere O, Leppamaki S, Arvilommi P, Isometsa ET. Suicidal ideation and attempts in bipolar I and II disorders. J Clin Psychiat 2005;66: 1456–1462.Google Scholar
  5. 5.
    Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG, et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996; 276:293–299.PubMedGoogle Scholar
  6. 6.
    Woods SW. The economic burden of bipolar disease. J Clin Psychiat 2000;61:38–41.Google Scholar
  7. 7.
    Stimmel GL. Economic grand rounds: the economic burden of bipolar disorder. Psychiat Serv 2004;55:117–118.Google Scholar
  8. 8.
    Hirschfeld RM, Lewis L, Vornik LA. Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. J Clin Psychiat 2003;64:161–174.Google Scholar
  9. 9.
    Lish JD, Dime-Meenan S, Whybrow PC, Price RA, Hirschfeld RM. The National Depressive and Manic-depressive Association (DMDA) survey of bipolar members. J Affect Disord 1994;31:281–294.PubMedGoogle Scholar
  10. 10.
    Goodwin FK. Rationale for long-term treatment of bipolar disorder and evidence for long-term lithium treatment. J Clin Psychiat 2002;63(Suppl 10):5–12.Google Scholar
  11. 11.
    Wehr TA, Goodwin FK. Can antidepressants cause mania and worsen the course of affective illness? Am J Psychiat 1987;144:1403–1411.PubMedGoogle Scholar
  12. 12.
    Levine J, Chengappa KN, Brar JS, Gershon S, Yablonsky E, Stapf D, et al. Psychotropic drug prescription patterns among patients with bipolar I disorder. Bipolar Disord 2000;2:120–130.PubMedGoogle Scholar
  13. 13.
    Ghaemi SN, Hsu DJ, Thase ME, Wisniewski SR, Nierenberg AA, Miyahara S, et al. Pharmacological treatment patterns at study entry for the first 500 STEP-BD participants. Psychiat Serv 2006;57:660–665.Google Scholar
  14. 14.
    Bhangoo RK, Lowe CH, Myers FS, Treland J, Curran J, Towbin KE, et al. Medication use in children and adolescents treated in the community for bipolar disorder. J Child Adol Psychopharmacol 2003;13:515–522.Google Scholar
  15. 15.
    Perlis RH, Ostacher MJ, Patel JK, Marangell LB, Zhang H, Wisniewski SR, et al. Predictors of recurrence in bipolar disorder: primary outcomes from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Am J Psychiat 2006;163:217–224.PubMedGoogle Scholar
  16. 16.
    Pavuluri MN, Birmaher B, Naylor MW. Pediatric bipolar disorder: a review of the past 10 Years. J Am Acad Child Adol Psychiat 2005;44:846–871.Google Scholar
  17. 17.
    DelBello MP, Soutullo CA, Hendricks W, Niemeier RT, McElroy SL, Strakowski SM. Prior stimulant treatment in adolescents with bipolar disorder: association with age at onset. Bipolar Disord 2001;3:53–57.PubMedGoogle Scholar
  18. 18.
    Biederman J, Mick E, Spencer TJ, Wilens TE, Faraone S V. Therapeutic dilemmas in the pharmacotherapy of bipolar depression in the young. J Child Adol Psychopharmacol 2000;10:185–192.Google Scholar
  19. 19.
    Soutullo CA, DelBello MP, Ochsner JE, McElroy SL, Taylor SA, Strakowski SM, et al. Severity of bipolarity in hospitalized manic adolescents with history of stimulant or antide-pressant treatment. J Affect Disord 2002;70:323–327.PubMedGoogle Scholar
  20. 20.
    Chang K, Adleman N, Wagner C, Barnea-Goraly N, Garrett A. Will neuroimaging ever be used to diagnose pediatric bipolar disorder? Dev Psychopathol 2006;18:1133–1146.PubMedGoogle Scholar
  21. 21.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system — a technical review. NMR Biomed 2002; 15:435–455.PubMedGoogle Scholar
  22. 22.
    Altshuler LL, Curran JG, Hauser P, Mintz J, Denicoff K, Post R. T2 hyperintensities in bipolar disorder: magnetic resonance imaging comparison and literature meta-analysis. Am J Psychiat 1995;152:1139–1144.PubMedGoogle Scholar
  23. 23.
    Aylward EH, Roberts-Twillie JV, Barta PE, Kumar AJ, Harris GJ, Geer M, et al. Basal ganglia volumes and white matter hyperintensities in patients with bipolar disorder. Am J Psychiat 1994;151:687–693.PubMedGoogle Scholar
  24. 24.
    Bearden CE, Hoffman KM, Cannon TD. The neuropsy-chology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord 2001;3:106–150.PubMedGoogle Scholar
  25. 25.
    Norris SD, Krishnan KR, Ahearn E. Structural changes in the brain of patients with bipolar affective disorder by MRI: a review of the literature. Prog Neuropsychopharmacol Biol Psychiat 1997;21:1323–1337.Google Scholar
  26. 26.
    Strakowski SM, DelBello MP, Adler C, Cecil KM, Sax KW. Neuroimaging in bipolar disorder. Bipolar Disord 2000;2:148–164.PubMedGoogle Scholar
  27. 27.
    Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H, et al. Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 2004;6:197–203.PubMedGoogle Scholar
  28. 28.
    Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001;49:1–52.PubMedGoogle Scholar
  29. 29.
    Strakowski SM, Wilson DR, Tohen M, Woods BT, Douglass AW, Stoll AL. Structural brain abnormalities in first-episode mania. Biol Psychiat 1993;33:602–609.PubMedGoogle Scholar
  30. 30.
    Coffey CE, Wilkinson WE, Weiner RD, Parashos IA, Djang WT, Webb MC, et al. Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study. Arch Gen Psychiat 1993;50:7–16.Google Scholar
  31. 31.
    Husain MM, McDonald WM, Doraiswamy PM, Figiel GS, Na C, Escalona PR, et al. A magnetic resonance imaging study of putamen nuclei in major depression. Psychiat Res 1991;40:95–99.Google Scholar
  32. 32.
    Krishnan KR, McDonald WM, Escalona PR, Doraiswamy PM, Na C, Husain MM, et al. Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations. Arch Gen Psychiat 1992;49:553–557.Google Scholar
  33. 33.
    Kumar A, Bilker W, Jin Z, Udupa J. Atrophy and high intensity lesions: complementary neurobiological mechanisms in late-life major depression. Neuropsychopharmacology 2000;22:264–274.PubMedGoogle Scholar
  34. 34.
    Haldane M, Frangou S. New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiat 2004;28:943–960.Google Scholar
  35. 35.
    Hoge EA, Friedman L, Schulz SC. Meta-analysis of brain size in bipolar disorder. Schizophr Res 1999;37:177–181.PubMedGoogle Scholar
  36. 36.
    McDonald C, Zanelli J, Rabe-Hesketh S, Ellison-Wright I, Sham P, Kalidindi S, et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiat 2004;56:411–417.PubMedGoogle Scholar
  37. 37.
    Strakowski S, Adler C, DelBello M. Volumetric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder? Bipolar Disord 2002;4:80–88.PubMedGoogle Scholar
  38. 38.
    Burzaco J, Stereotactic surgery in the treatment of obsessive-compulsive neurosis. In: C. Perris, G. Struwe, and B. Jansson, eds. Biological Psychiatry. Amsterdam: Elsevier/ North Holland; 1981.Google Scholar
  39. 39.
    Harvey I, Persaud R, Ron MA, Baker G, Murray RM. Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls. Psychol Med 1994;24:689–699.PubMedGoogle Scholar
  40. 40.
    Sax KW, Strakowski SM, Zimmerman ME, DelBello MP, Keck PE, Jr., Hawkins JM. Frontosubcortical neuroanatomy and the continuous performance test in mania. Am J Psychiat 1999;156:139–141.PubMedGoogle Scholar
  41. 41.
    Drevets W, Price J, Simpson Jr J, Todd R, Reich T, Vannier M, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997;24:824–827.Google Scholar
  42. 42.
    Lopez-Larson MP, DelBello MP, Zimmerman ME, Schwiers ML, Strakowski SM. Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol Psychiat 2002;52:93–100.PubMedGoogle Scholar
  43. 43.
    Pearlson GD, Barta PE, Powers RE, Menon RR, Richards SS, Aylward EH, et al. Ziskind-Somerfeld Research Award 1996. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biol Psychiat 1997;41:1–14.Google Scholar
  44. 44.
    Schlaepfer TE, Harris GJ, Tien AY, Peng LW, Lee S, Federman EB, et al. Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiat 1994; 151:842–848.PubMedGoogle Scholar
  45. 45.
    Altshuler LL, Bartzokis G, Grieder T, Curran J, Mintz J. Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity. Arch Gen Psychiat 1998; 55:663–664.PubMedGoogle Scholar
  46. 46.
    Strakowski S, DelBello M, Sax K, Zimmerman M, Shear P, Hawkins J, et al. Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Arch Gen Psychiat 1999;56:254–260.PubMedGoogle Scholar
  47. 47.
    Altshuler LL, Bartzokis G, Grieder T, Curran J, Jimenez T, Leight K, et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiat 2000;48:147–162.PubMedGoogle Scholar
  48. 48.
    Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiat 2004;161:1957–1966.PubMedGoogle Scholar
  49. 49.
    McIntosh AM, Job DE, Moorhead TW, Harrison LK, Forrester K, Lawrie SM, et al. Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biol Psychiat 2004;56:544–552.PubMedGoogle Scholar
  50. 50.
    Dupont RM, Jernigan TL, Heindel W, Butters N, Shafer K, Wilson T, et al. Magnetic resonance imaging and mood disorders. Localization of white matter and other subcortical abnormalities. Arch Gen Psychiat 1995;52:747–755.Google Scholar
  51. 51.
    Swayze VW, 2nd, Andreasen NC, Alliger RJ, Yuh WT, Ehrhardt JC. Subcortical and temporal structures in affective disorder and schizophrenia: a magnetic resonance imaging study. Biol Psychiat 1992;31:221–240.PubMedGoogle Scholar
  52. 52.
    Caetano SC, Sassi R, Brambilla P, Harenski K, Nicoletti M, Mallinger AG, et al. MRI study of thalamic volumes in bipolar and unipolar patients and healthy individuals. Psychiat Res 2001;108:161–168.Google Scholar
  53. 53.
    Dupont RM, Butters N, Schafer K, Wilson T, Hesselink J, Gillin JC. Diagnostic specificity of focal white matter abnormalities in bipolar and unipolar mood disorder. Biol Psychiat 1995;38:482–486.PubMedGoogle Scholar
  54. 54.
    Brambilla P, Harenski K, Nicoletti M, Mallinger AG, Frank E, Kupfer DJ, et al. MRI study of posterior fossa structures and brain ventricles in bipolar patients. J Psychiat Res 2001;35:313–322.PubMedGoogle Scholar
  55. 55.
    DelBello M, Strakowski S, Zimmerman M, Hawkins J, Sax K. MRI analysis of the cerebellum in bipolar disorder: a pilot study. Neuropsychopharmacology 1999;21:63–68.PubMedGoogle Scholar
  56. 56.
    Mills N, DelBello M, Adler C, Strakowski S. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiat 2005;162:1530–1532.PubMedGoogle Scholar
  57. 57.
    Stoll AL, Renshaw PF, Yurgelun-Todd DA, Cohen BM. Neuroimaging in bipolar disorder: what have we learned? Biol Psychiat 2000;48:505–517.PubMedGoogle Scholar
  58. 58.
    Rangel-Guerra RA, Perez-Payan H, Minkoff L, Todd LE. Nuclear magnetic resonance in bipolar affective disorders. AJNR Am J Neuroradiol 1983;4:229–231.PubMedGoogle Scholar
  59. 59.
    Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human brain grey matter. Lancet 2000;356:1241–1242.PubMedGoogle Scholar
  60. 60.
    Figueroa R, Harenski K, Nicoletti M, Brambilla P, Mallinger AG, Frank E, et al. Dorsolateral prefrontal cortex abnormalities in bipolar disorder: possible effects of lithium treatment? Biol Psychiat 2000;47:S103–S104.Google Scholar
  61. 61.
    Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiat 2000;48:813–829.PubMedGoogle Scholar
  62. 62.
    Chen CH, Ridler K, Suckling J, Williams S, Fu CH, Merlo-Pich E, et al. Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol Psychiat 2007;62:407–414.PubMedGoogle Scholar
  63. 63.
    Botteron KN, Figiel GS, Wetzel MW, Hudziak J, VanEerdewegh M. MRI abnormalities in adolescent bipolar affective disorder. J Am Acad Child Adol Psychiat 1992;31:258–261.Google Scholar
  64. 64.
    Botteron KN, Vannier MW, Geller B, Todd RD, Lee BC. Preliminary study of magnetic resonance imaging characteristics in 8- to 16-Year-olds with mania. J Am Acad Child Adol Psychiat 1995;34:742–749.Google Scholar
  65. 65.
    Lyoo IK, Lee HK, Jung JH, Noam GG, Renshaw PF. White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Compr Psychiat 2002;43:361–368.PubMedGoogle Scholar
  66. 66.
    Pillai JJ, Friedman L, Stuve TA, Trinidad S, Jesberger JA, Lewin JS, et al. Increased presence of white matter hyper-intensities in adolescent patients with bipolar disorder. Psychiat Res 2002;114:51–56.Google Scholar
  67. 67.
    Chang K, Barnea-Goraly N, Karchemskiy A, Simeonova DI, Barnes P, Ketter T, et al. Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder. Biol Psychiat 2005;58:197–203.PubMedGoogle Scholar
  68. 68.
    Adler CM, Adams J, DelBello MP, Holland SK, Schmithorst V, Levine A, et al. Evidence of white matter pathology in bipolar disorder adolescents experiencing their first episode of mania: a diffusion tensor imaging study. Am J Psychiat 2006;163:322–324.PubMedGoogle Scholar
  69. 69.
    Friedman L, Findling RL, Kenny JT, Swales TP, Stuve TA, Jesberger JA, et al. An MRI study of adolescent patients with either schizophrenia or bipolar disorder as compared to healthy control subjects. Biol Psychiat 1999;46:78–88.PubMedGoogle Scholar
  70. 70.
    Strakowski SM, DelBello MP, Zimmerman ME, Getz GE, Mills N P, Ret J, et al. Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. Am J Psychiat 2002;159:1841–1847.PubMedGoogle Scholar
  71. 71.
    Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC, et al. Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiat 2003;60:1201–1208.PubMedGoogle Scholar
  72. 72.
    DelBello MP, Zimmerman ME, Mills NP, Getz GE, Strakowski SM. Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disord 2004;6:43–52.PubMedGoogle Scholar
  73. 73.
    Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN, et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiat 2005;162:1256–1265.PubMedGoogle Scholar
  74. 74.
    Wilke M, Kowatch RA, DelBello MP, Mills NP, Holland SK. Voxel-based morphometry in adolescents with bipolar disorder: first results. Psychiat Res 2004;131:57–69.Google Scholar
  75. 75.
    Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney DS, Pine DS, et al. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based mor-phometry study. Arch Gen Psychiat 2005;62:734–741.PubMedGoogle Scholar
  76. 76.
    Sanches M, Sassi RB, Axelson D, Nicoletti M, Brambilla P, Hatch JP, et al. Subgenual prefrontal cortex of child and adolescent bipolar patients: a morphometric magnetic resonance imaging study. Psychiat Res 2005;138:43–49.Google Scholar
  77. 77.
    Ladouceur CD, Almeida JR, Birmaher B, Axelson DA, Nau S, Kalas C, et al. Subcortical gray matter volume abnormalities in healthy bipolar offspring: potential neuro-anatomical risk marker for bipolar disorder? J Am Acad Child Adol Psychiat 2008;47:532–539.Google Scholar
  78. 78.
    Singh MK, Delbello MP, Adler CM, Stanford KE, Strakowski SM. Neuroanatomical characterization of child offspring of bipolar parents. J Am Acad Child Adol Psychiat 2008;47:526–531.Google Scholar
  79. 79.
    Blumberg HP, Krystal JH, Bansal R, Martin A, Dziura J, Durkin K, et al. Age, rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in bipolar disorder: a cross-sectional study. Biol Psychiat 2006;59:611–618.PubMedGoogle Scholar
  80. 80.
    Chen BK, Sassi R, Axelson D, Hatch JP, Sanches M, Nicoletti M, et al. Cross-sectional study of abnormal amygdala development in adolescents and young adults with bipolar disorder. Biol Psychiat 2004;56:399–405.PubMedGoogle Scholar
  81. 81.
    Chen HH, Nicoletti MA, Hatch JP, Sassi RB, Axelson D, Brambilla P, et al. Abnormal left superior temporal gyrus volumes in children and adolescents with bipolar disorder: a magnetic resonance imaging study. Neurosci Lett 2004;363:65–68.PubMedGoogle Scholar
  82. 82.
    DelBello MP, Adler CM, Strakowski SM. The neurophysi-ology of childhood and adolescent bipolar disorder. CNS Spectr 2006;11:298–311.PubMedGoogle Scholar
  83. 83.
    Chang K, Karchemskiy A, Barnea-Goraly N, Garrett A, Simeonova DI, Reiss A. Reduced amygdalar gray matter volume in familial pediatric bipolar disorder. J Am Acad Child Adol Psychiat 2005;44:565–573.Google Scholar
  84. 84.
    Rosso IM, Killgore WD, Cintron CM, Gruber SA, Tohen M, Yurgelun-Todd DA. Reduced amygdala volumes in first-episode bipolar disorder and correlation with cerebral white matter. Biol Psychiat 2007;61:743–749.PubMedGoogle Scholar
  85. 85.
    Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J. Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 1997;48:589–601.PubMedGoogle Scholar
  86. 86.
    Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, et al. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 2004;24:6392–6401.PubMedGoogle Scholar
  87. 87.
    Bearden CE, Soares JC, Klunder AD, Nicoletti M, Dierschke N, Hayashi KM, et al. Three-dimensional mapping of hip-pocampal anatomy in adolescents with bipolar disorder. J Am Acad Child Adol Psychiat 2008;47:515–525.Google Scholar
  88. 88.
    Dasari M, Friedman L, Jesberger J, Stuve TA, Findling RL, Swales TP, et al. A magnetic resonance imaging study of thalamic area in adolescent patients with either schizophrenia or bipolar disorder as compared to healthy controls. Psychiat Res 1999;91:155–162.Google Scholar
  89. 89.
    Sanches M, Roberts RL, Sassi RB, Axelson D, Nicoletti M, Brambilla P, et al. Developmental abnormalities in striatum in young bipolar patients: a preliminary study. Bipolar Disord 2005;7:153–158.PubMedGoogle Scholar
  90. 90.
    Adleman NE, Barnea-Goraly N, Chang KD. Review of magnetic resonance imaging and spectroscopy studies in children with bipolar disorder. Expert Rev Neurother 2004;4:69–77.PubMedGoogle Scholar
  91. 91.
    Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC, et al. A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiat 2003;60:601–609.PubMedGoogle Scholar
  92. 92.
    Caligiuri MP, Brown GG, Meloy MJ, Eberson SC, Kindermann SS, Frank LR, et al. An fMRI study of affective state and medication on cortical and subcortical brain regions during motor performance in bipolar disorder. Psychiat Res 2003;123:171–182.Google Scholar
  93. 93.
    Chen CH, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R, et al. Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiat 2006;59:31–39.PubMedGoogle Scholar
  94. 94.
    Strakowski SM, Adler CM, Holland SK, Mills N, DelBello MP. A preliminary fMRI study of sustained attention in euthymic, unmedicated bipolar disorder. Neuropsychopharmacology 2004;29:1734–1740.PubMedGoogle Scholar
  95. 95.
    Adler CM, Holland SK, Schmithorst V, Tuchfarber MJ, Strakowski SM. Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord 2004;6:540–549.PubMedGoogle Scholar
  96. 96.
    Lagopoulos J, Ivanovski B, Malhi GS. An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiat Neurosci 2007;32:174–184.Google Scholar
  97. 97.
    Curtis VA, Dixon TA, Morris RG, Bullmore ET, Brammer MJ, Williams SC, et al. Differential frontal activation in schizophrenia and bipolar illness during verbal fluency. J Affect Disord 2001;66:111–121.PubMedGoogle Scholar
  98. 98.
    Curtis VA, Thompson JM, Seal ML, Monks PJ, Lloyd AJ, Harrison L, et al. The nature of abnormal language processing in euthymic bipolar I disorder: evidence for a relationship between task demand and prefrontal function. Bipolar Disord 2007;9:358–369.PubMedGoogle Scholar
  99. 99.
    Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, et al. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiat 2004;55:578–587.PubMedGoogle Scholar
  100. 100.
    Kronhaus DM, Lawrence NS, Williams AM, Frangou S, Brammer MJ, Williams SC, et al. Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex. Bipolar Disord 2006;8:28–39.PubMedGoogle Scholar
  101. 101.
    Yurgelun-Todd DA, Gruber SA, Kanayama G, Killgore WD, Baird AA, Young AD. fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord 2000; 2:237–248.PubMedGoogle Scholar
  102. 102.
    Lennox BR, Jacob R, Calder AJ, Lupson V, Bullmore ET. Behavioural and neurocognitive responses to sad facial affect are attenuated in patients with mania. Psychol Med 2004;34:795–802.PubMedGoogle Scholar
  103. 103.
    Malhi GS, Lagopoulos J, Sachdev P, Mitchell PB, Ivanovski B, Parker GB. Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disord 2004;6:271–285.PubMedGoogle Scholar
  104. 104.
    Malhi GS, Lagopoulos J, Owen AM, Ivanovski B, Shnier R, Sachdev P. Reduced activation to implicit affect induction in euthymic bipolar patients: an fMRI study. J Affect Disord 2007;97:109–122.PubMedGoogle Scholar
  105. 105.
    Altshuler L, Bookheimer S, Proenza MA, Townsend J, Sabb F, Firestine A, et al. Increased amygdala activation during mania: a functional magnetic resonance imaging study. Am J Psychiat 2005;162:1211–1213.PubMedGoogle Scholar
  106. 106.
    Marchand WR, Lee JN, Thatcher GW, Jensen C, Stewart D, Dilda V, et al. A functional MRI study of a paced motor activation task to evaluate frontal-subcortical circuit function in bipolar depression. Psychiat Res 2007;155:221–230.Google Scholar
  107. 107.
    Blumberg HP, Martin A, Kaufman J, Leung HC, Skudlarski P, Lacadie C, et al. Frontostriatal abnormalities in adolescents with bipolar disorder: preliminary observations from functional MRI. Am J Psychiat 2003;160:1345–1347.PubMedGoogle Scholar
  108. 108.
    Chang K, Adleman NE, Dienes K, Simeonova DI, Menon V, Reiss A. Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiat 2004;61:781–792.PubMedGoogle Scholar
  109. 109.
    Nelson EE, Vinton DT, Berghorst L, Towbin KE, Hommer RE, Dickstein DP, et al. Brain systems underlying response flexibility in healthy and bipolar adolescents: an event-related fMRI study. Bipolar Disord 2007;9:810–819.PubMedGoogle Scholar
  110. 110.
    Pavuluri MN, O'Connor MM, Harral E, Sweeney JA. Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol Psychiat 2007;62:158–167.PubMedGoogle Scholar
  111. 111.
    Pavuluri MN, O'Connor MM, Harral EM, Sweeney JA. An fMRI study of the interface between affective and cognitive neural circuitry in pediatric bipolar disorder. Psychiat Res 2008;162:244–255.Google Scholar
  112. 112.
    Dickstein DP, Rich BA, Roberson-Nay R, Berghorst L, Vinton D, Pine DS, et al. Neural activation during encoding of emotional faces in pediatric bipolar disorder. Bipolar Disord 2007;9:679–692.PubMedGoogle Scholar
  113. 113.
    Leibenluft E, Rich BA, Vinton DT, Nelson EE, Fromm SJ, Berghorst LH, et al. Neural circuitry engaged during unsuccessful motor inhibition in pediatric bipolar disorder. Am J Psychiat 2007;164:52–60.PubMedGoogle Scholar
  114. 114.
    Rich BA, Vinton DT, Roberson-Nay R, Hommer RE, Berghorst LH, McClure EB, et al. Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. Proc Natl Acad Sci USA 2006;103:8900–8905.PubMedGoogle Scholar
  115. 115.
    Rich BA, Fromm SJ, Berghorst LH, Dickstein DP, Brotman MA, Pine DS, et al. Neural connectivity in children with bipolar disorder: impairment in the face emotion processing circuit. J Child Psychol Psychiat 2008;49:88–96.PubMedGoogle Scholar
  116. 116.
    Adler CM, Delbello MP, Mills NP, Schmithorst V, Holland S, Strakowski SM. Comorbid ADHD is associated with altered patterns of neuronal activation in adolescents with bipolar disorder performing a simple attention task. Bipolar Disord 2005;7:577–588.PubMedGoogle Scholar
  117. 117.
    Chang KD, Wagner C, Garrett A, Howe M, Reiss A. A preliminary functional magnetic resonance imaging study of prefrontal-amygdalar activation changes in adolescents with bipolar depression treated with lamotrigine. Bipolar Disord 2008;10:426–431.PubMedGoogle Scholar
  118. 118.
    Kato T, Inubushi T, Kato N. Magnetic resonance spectros-copy in affective disorders. J Neuropsychiat Clin Neurosci 1998;10:133–147.Google Scholar
  119. 119.
    Post RM, Speer AM, Hough CJ, Xing G. Neurobiology of bipolar illness: implications for future study and therapeutics. Ann Clin Psychiat 2003;15:85–94.Google Scholar
  120. 120.
    Soares JC, Krishnan KR, Keshavan MS. Nuclear magnetic resonance spectroscopy: new insights into the pathophysi-ology of mood disorders. Depression 1996;4:14–30.PubMedGoogle Scholar
  121. 121.
    Tsai G, Coyle JT. N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 1995;46:531–540.PubMedGoogle Scholar
  122. 122.
    Charles HC, Lazeyras F, Krishnan KR, Boyko OB, Patterson LJ, Doraiswamy PM, et al. Proton spectroscopy of human brain: effects of age and sex. Prog Neuropsychopharmacol Biol Psychiat 1994;18:995–1004.Google Scholar
  123. 123.
    van der Knaap MS, van der Grond J, van Rijen PC, Faber JA, Valk J, Willemse K. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990;176:509–515.Google Scholar
  124. 124.
    Delbello MP, Strakowski SM. Neurochemical predictors of response to pharmacologic treatments for bipolar disorder. Curr Psychiat Rep 2004;6:466–472.Google Scholar
  125. 125.
    Allison JH, Stewart MA. Reduced brain inositol in lithium-treated rats. Nat New Biol 1971;233:267–268.PubMedGoogle Scholar
  126. 126.
    Berridge MJ. The Albert Lasker Medical Awards. Inositol trisphosphate, calcium, lithium, and cell signaling. JAMA 1989;262:1834–1841.Google Scholar
  127. 127.
    Moore GJ, Galloway MP. Magnetic resonance spectros-copy: neurochemistry and treatment effects in affective disorders. Psychopharmacol Bull 2002;36:5–23.PubMedGoogle Scholar
  128. 128.
    Glitz DA, Manji HK, Moore GJ. Mood disorders: treatment-induced changes in brain neurochemistry and structure. Semin Clin Neuropsychiat 2002;7:269–280.Google Scholar
  129. 129.
    Soares JC, Boada F, Keshavan MS. Brain lithium measurements with (7)Li magnetic resonance spectroscopy (MRS): a literature review. Eur Neuropsychopharmacol 2000;10:151–158.PubMedGoogle Scholar
  130. 130.
    Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B. Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiat 2003;160:873–882.PubMedGoogle Scholar
  131. 131.
    Molina V, Sanchez J, Sanz J, Reig S, Benito C, Leal I, et al. Dorsolateral prefrontal N-acetyl-aspartate concentration in male patients with chronic schizophrenia and with chronic bipolar disorder. Eur Psychiat 2007;22:505–512.Google Scholar
  132. 132.
    Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA. Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiat 2000;47:475–481.PubMedGoogle Scholar
  133. 133.
    Atmaca M, Yildirim H, Ozdemir H, Ogur E, Tezcan E. Hippocampal 1H MRS in patients with bipolar disorder taking valproate versus valproate plus quetiapine. Psychol Med 2007;37:121–129.PubMedGoogle Scholar
  134. 134.
    Scherk H, Backens M, Schneider-Axmann T, Kemmer C, Usher J, Reith W, et al. Neurochemical pathology in hippocampus in euthymic patients with bipolar I disorder. Acta Psychiat Scand 2008;117:283–288.PubMedGoogle Scholar
  135. 135.
    Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Ashworth F, Sule A, et al. Reduction in occipital cortex gamma-amin-obutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiat 2007;61:806–812.PubMedGoogle Scholar
  136. 136.
    Frye MA, Thomas MA, Yue K, Binesh N, Davanzo P, Ventura J, et al. Reduced concentrations of N-acetylaspartate (NAA) and the NAA-creatine ratio in the basal ganglia in bipolar disorder: a study using 3-Tesla proton magnetic resonance spectroscopy. Psychiat Res 2007;154:259–265.Google Scholar
  137. 137.
    Atmaca M, Yildirim H, Ozdemir H, Poyraz AK, Tezcan E, Ogur E. Hippocampal 1H MRS in first-episode bipolar I patients. Prog Neuropsychopharmacol Biol Psychiat 2006;30:1235–1239.Google Scholar
  138. 138.
    Cecil KM, DelBello MP, Morey R, Strakowski SM. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord 2002;4:357–365.PubMedGoogle Scholar
  139. 139.
    Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J, et al. Neuronal pathology in the hip-pocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiat 2003;53:906–913.PubMedGoogle Scholar
  140. 140.
    Blasi G, Bertolino A, Brudaglio F, Sciota D, Altamura M, Antonucci N, et al. Hippocampal neurochemical pathology in patients at first episode of affective psychosis: a proton magnetic resonance spectroscopic imaging study. Psychiat Res 2004;131:95–105.Google Scholar
  141. 141.
    Amaral JA, Tamada RS, Issler CK, Caetano SC, Cerri GG, de Castro CC, et al. A 1HMRS study of the anterior cingulate gyrus in euthymic bipolar patients. Hum Psychopharmacol 2006;21:215–220.PubMedGoogle Scholar
  142. 142.
    Scherk H, Backens M, Schneider-Axmann T, Usher J, Kemmer C, Reith W, et al. Cortical neurochemistry in euthymic patients with bipolar I disorder. World J Biol Psychiat 2007:1–10.Google Scholar
  143. 143.
    Brambilla P, Stanley JA, Nicoletti MA, Sassi RB, Mallinger AG, Frank E, et al. 1H magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in bipolar disorder patients. J Affect Disord 2005;86:61–67.PubMedGoogle Scholar
  144. 144.
    Hamakawa H, Kato T, Murashita J, Kato N. Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders. Eur Arch Psychiat Clin Neurosci 1998;248:53–58.Google Scholar
  145. 145.
    Kato T, Hamakawa H, Shioiri T, Murashita J, Takahashi Y, Takahashi S, et al. Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder. J Psychiat Neurosci 1996;21:248–254.Google Scholar
  146. 146.
    Ohara K, Isoda H, Suzuki Y, Takehara Y, Ochiai M, Takeda H, et al. Proton magnetic resonance spectroscopy of the lenticular nuclei in bipolar I affective disorder. Psychiat Res 1998;84:55–60.Google Scholar
  147. 147.
    Frey BN, Folgierini M, Nicoletti M, Machado-Vieira R, Stanley JA, Soares JC, et al. A proton magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in acute mania. Hum Psychopharmacol 2005;20:133–139.PubMedGoogle Scholar
  148. 148.
    Michael N, Erfurth A, Ohrmann P, Gossling M, Arolt V, Heindel W, et al. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefron-tal cortex. Psychopharmacology (Berl) 2003;168:344–346.Google Scholar
  149. 149.
    Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiat 2004;61:450–458.PubMedGoogle Scholar
  150. 150.
    Frye MA, Watzl J, Banakar S, O'Neill J, Mintz J, Davanzo P, et al. Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology 2007;32:2490–2499.PubMedGoogle Scholar
  151. 151.
    Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB, et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2's neurotrophic effects? Biol Psychiat 2000;48:1–8.PubMedGoogle Scholar
  152. 152.
    Frey BN, Stanley JA, Nery FG, Monkul ES, Nicoletti MA, Chen HH, et al. Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord 2007;9(Suppl 1):119–127.PubMedGoogle Scholar
  153. 153.
    Deicken RF, Eliaz Y, Feiwell R, Schuff N. Increased thal-amic N-acetylaspartate in male patients with familial bipolar I disorder. Psychiat Res 2001;106:35–45.Google Scholar
  154. 154.
    Manji HK, Moore GJ, Chen G. Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiat 2000;48:740–754.PubMedGoogle Scholar
  155. 155.
    Sharma R, Venkatasubramanian PN, Barany M, Davis JM. Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophr Res 1992;8:43–49.PubMedGoogle Scholar
  156. 156.
    Silverstone PH, Wu RH, O'Donnell T, Ulrich M, Asghar SJ, Hanstock CC. Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetyl-aspartate concentrations in euthymic bipolar patients. Int Clin Psychopharmacol 2003;18:73–79.PubMedGoogle Scholar
  157. 157.
    Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL, et al. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiat 2004;56:340–348.PubMedGoogle Scholar
  158. 158.
    Frangou S, Lewis M, Wollard J, Simmons A. Preliminary in vivo evidence of increased N-acetyl-aspartate following eicosapentanoic acid treatment in patients with bipolar disorder. J Psychopharmacol 2007;21:435–439.PubMedGoogle Scholar
  159. 159.
    Kim DJ, Lyoo IK, Yoon SJ, Choi T, Lee B, Kim JE, et al. Clinical response of quetiapine in rapid cycling manic bipolar patients and lactate level changes in proton magnetic resonance spectroscopy. Prog Neuropsychopharmacol Biol Psychiat 2007;31:1182–1188.Google Scholar
  160. 160.
    Silverstone PH, Wu RH, O'Donnell T, Ulrich M, Asghar SJ, Hanstock CC. Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients. Hum Psychopharmacol 2002;17:321–327.PubMedGoogle Scholar
  161. 161.
    Bruhn H, Stoppe G, Staedt J, Merboldt KD, Hanicke W, Frahm J. Quantitative proton MRS in vivo shows cerebral myo-inositol and cholines to be unchanged in manic-depressive patients treated with lithium. Proc Soc Magn Reson Med 1993:1543.Google Scholar
  162. 162.
    Moore CM, Breeze JL, Gruber SA, Babb SM, Frederick BB, Villafuerte RA, et al. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectro-scopic imaging study of the anterior cingulate cortex. Bipolar Disord 2000;2:207–216.PubMedGoogle Scholar
  163. 163.
    Moore GJ, Bebchuk JM, Parrish JK, Faulk MW, Arfken CL, Strahl-Bevacqua J, et al. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiat 1999;156:1902–1908.PubMedGoogle Scholar
  164. 164.
    Kaya N, Resmi H, Ozerdem A, Guner G, Tunca Z. Increased inositol-monophosphatase activity by lithium treatment in bipolar patients. Prog Neuropsychopharmacol Biol Psychiat 2004;28:521–527.Google Scholar
  165. 165.
    Brambilla P, Stanley JA, Sassi RB, Nicoletti MA, Mallinger AG, Keshavan MS, et al. 1H MRS study of dorsolateral prefrontal cortex in healthy individuals before and after lithium administration. Neuropsychopharmacology 2004;29:1918–1924.PubMedGoogle Scholar
  166. 166.
    Silverstone PH, Hanstock CC, Fabian J, Staab R, Allen PS. Chronic lithium does not alter human myo-inositol or phos-phomonoester concentrations as measured by 1H and 31P MRS. Biol Psychiat 1996;40:235–246.PubMedGoogle Scholar
  167. 167.
    Silverstone PH, Hanstock CC, Rotzinger S. Lithium does not alter the choline/creatine ratio in the temporal lobe of human volunteers as measured by proton magnetic resonance spectroscopy. J Psychiat Neurosci 1999;24:222–226.Google Scholar
  168. 168.
    Lafer B, Renshaw PF, Sachs G, Christensen JD, Yurgelun-Todd DA, Stoll AL. Proton MRS of the basal ganglia in bipolar disorder. Biol Psychiat 1994;35:685.Google Scholar
  169. 169.
    Kato T, Hamakawa H, Shioiri T, Murashita J, Inubushi T, Takahashi S. Proton MRS of the basal ganglia in patients with bipolar disorders. Proc Soc Magn Reson Med 605.Google Scholar
  170. 170.
    Hamakawa H, Kato T, Shioiri T, Inubushi T, Kato N. Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychol Med 1999;29:639–644.PubMedGoogle Scholar
  171. 171.
    Stoll AL, Renshaw PF, Sachs GS, Guimaraes AR, Miller C, Cohen BM, et al. The human brain resonance of choline-containing compounds is similar in patients receiving lithium treatment and controls: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiat 1992;32:944–949.PubMedGoogle Scholar
  172. 172.
    Wu RH, O'Donnell T, Ulrich M, Asghar SJ, Hanstock CC, Silverstone PH. Brain choline concentrations may not be altered in euthymic bipolar disorder patients chronically treated with either lithium or sodium valproate. Ann Gen Hosp Psychiat 2004;3:13.Google Scholar
  173. 173.
    Kato T, Shioiri T, Takahashi S, Inubushi T. Measurement of brain phosphoinositide metabolism in bipolar patients using in vivo 31P-MRS. J Affect Disord 1991;22:185–190.PubMedGoogle Scholar
  174. 174.
    Kato T, Takahashi S, Shioiri T, Inubushi T. Brain phosphorous metabolism in depressive disorders detected by phos-phorus-31 magnetic resonance spectroscopy. J Affect Disord 1992;26:223–230.PubMedGoogle Scholar
  175. 175.
    Kato T, Takahashi S, Shioiri T, Inubushi T. Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 1993;27:53–59.PubMedGoogle Scholar
  176. 176.
    Deicken RF, Weiner MW, Fein G. Decreased temporal lobe phosphomonoesters in bipolar disorder. J Affect Disord 1995;33:195–199.PubMedGoogle Scholar
  177. 177.
    Deicken RF, Fein G, Weiner MW. Abnormal frontal lobe phosphorous metabolism in bipolar disorder. Am J Psychiat 1995;152:915–918.PubMedGoogle Scholar
  178. 178.
    Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S. Phosphorus-31 magnetic resonance spectros-copy and ventricular enlargement in bipolar disorder. Psychiat Res 1994;55:41–50.Google Scholar
  179. 179.
    Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 1994;31:125–133.PubMedGoogle Scholar
  180. 180.
    Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, et al. Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS. Psychol Med 1995;25:557–566.PubMedGoogle Scholar
  181. 181.
    Renshaw PF, Summers JJ, Renshaw CE, Hines KG, Leigh JS, Jr. Changes in the 31P-NMR spectra of cats receiving lithium chloride systemically. Biol Psychiat 1986; 21:694–698.PubMedGoogle Scholar
  182. 182.
    Kato T, Inubushi T, Kato N. Prediction of lithium response by 31P-MRS in bipolar disorder. Int J Neuropsychopharmacol 2000;3:83–85.PubMedGoogle Scholar
  183. 183.
    Gyulai L, Wicklund SW, Greenstein R, Bauer MS, Ciccione P, Whybrow PC, et al. Measurement of tissue lithium concentration by lithium magnetic resonance spectroscopy in patients with bipolar disorder. Biol Psychiat 1991;29:1161–1170.PubMedGoogle Scholar
  184. 184.
    Kato T, Inubushi T, Takahashi S. Relationship of lithium concentrations in the brain measured by lithium-7 magnetic resonance spectroscopy to treatment response in mania. J Clin Psychopharmacol 1994;14:330–335.PubMedGoogle Scholar
  185. 185.
    Kato T, Shioiri T, Inubushi T, Takahashi S. Brain lithium concentrations measured with lithium-7 magnetic resonance spectroscopy in patients with affective disorders: relationship to erythrocyte and serum concentrations. Biol Psychiat 1993;33:147–152.PubMedGoogle Scholar
  186. 186.
    Kato T, Takahashi S, Inubushi T. Brain lithium concentration by 7Li- and 1H-magnetic resonance spectroscopy in bipolar disorder. Psychiat Res 1992;45:53–63.Google Scholar
  187. 187.
    Sachs GS, Renshaw PF, Lafer B, Stoll AL, Guimaraes AR, Rosenbaum JF, et al. Variability of brain lithium levels during maintenance treatment: a magnetic resonance spectroscopy study. Biol Psychiat 1995;38:422–428.PubMedGoogle Scholar
  188. 188.
    Moore CM, Demopulos CM, Henry ME, Steingard RJ, Zamvil L, Katic A, et al. Brain-to-serum lithium ratio and age: an in vivo magnetic resonance spectroscopy study. Am J Psychiat 2002;159:1240–1242.PubMedGoogle Scholar
  189. 189.
    Jensen HV, Plenge P, Stensgaard A, Mellerup ET, Thomsen C, Aggernaes H, et al. Twelve-hour brain lithium concentration in lithium maintenance treatment of manic-depressive disorder: daily versus alternate-day dosing schedule. Psychopharmacology (Berl) 1996;124:275–278.Google Scholar
  190. 190.
    Soares JC, Boada F, Spencer S, Mallinger AG, Dippold CS, Wells KF, et al. Brain lithium concentrations in bipolar disorder patients: preliminary (7)Li magnetic resonance studies at 3 T. Biol Psychiat 2001;49:437–443.PubMedGoogle Scholar
  191. 191.
    Kato T, Fujii K, Shioiri T, Inubushi T, Takahashi S. Lithium side effects in relation to brain lithium concentration measured by lithium-7 magnetic resonance spectroscopy. Prog Neuropsychopharmacol Biol Psychiat 1996;20:87–97.Google Scholar
  192. 192.
    Chang K, Adleman N, Dienes K, Barnea-Goraly N, Reiss A, Ketter T. Decreased N-acetylaspartate in children with familial bipolar disorder. Biol Psychiat 2003;53:1059–1065.PubMedGoogle Scholar
  193. 193.
    Olvera RL, Caetano SC, Fonseca M, Nicoletti M, Stanley JA, Chen HH, et al. Low levels of N-acetyl aspartate in the left dorsolateral prefrontal cortex of pediatric bipolar patients. J Child Adol Psychopharmacol 2007;17:461–473.Google Scholar
  194. 194.
    Sassi RB, Stanley JA, Axelson D, Brambilla P, Nicoletti MA, Keshavan MS, et al. Reduced NAA levels in the dor-solateral prefrontal cortex of young bipolar patients. Am J Psychiat 2005;162:2109–2115.PubMedGoogle Scholar
  195. 195.
    Gallelli KA, Wagner CM, Karchemskiy A, Howe M, Spielman D, Reiss A, et al. N-acetylaspartate levels in bipolar offspring with and at high-risk for bipolar disorder. Bipolar Disord 2005;7:589–597.PubMedGoogle Scholar
  196. 196.
    Cecil KM, DelBello MP, Sellars MC, Strakowski SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adol Psychopharmacol 2003;13:545–555.Google Scholar
  197. 197.
    Castillo M, Kwock L, Courvoisie H, Hooper SR. Proton MR spectroscopy in children with bipolar affective disorder: preliminary observations. AJNR Am J Neuroradiol 2000;21:832–838.PubMedGoogle Scholar
  198. 198.
    Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M, et al. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 2001; 24:359–369.PubMedGoogle Scholar
  199. 199.
    Davanzo P, Yue K, Thomas MA, Belin T, Mintz J, Venkatraman TN, et al. Proton magnetic resonance spec-troscopy of bipolar disorder versus intermittent explosive disorder in children and adolescents. Am J Psychiat 2003;160:1442–1452.PubMedGoogle Scholar
  200. 200.
    Moore CM, Frazier JA, Glod CA, Breeze JL, Dieterich M, Finn CT, et al. Glutamine and glutamate levels in children and adolescents with bipolar disorder: a 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Am Acad Child Adol Psychiat 2007;46:524–534.Google Scholar
  201. 201.
    Patel NC, Cecil KM, Strakowski SM, Adler CM, DelBello MP. Neurochemical alterations in adolescent bipolar depression: a proton magnetic resonance spectroscopy pilot study of the prefrontal cortex. J Child Adol Psychopharmacol 2008;18:in press.Google Scholar
  202. 202.
    Patel NC, DelBello MP, Cecil KM, Stanford KE, Adler CM, Strakowski SM. Temporal changes in N-acetyl-aspartate concentrations in adolescents with bipolar depression treated with lithium. J Child Adol Psychopharmacol 2008;18:132–139.Google Scholar
  203. 203.
    DelBello MP, Cecil KM, Adler CM, Daniels JP, Strakowski SM. Neurochemical effects of olanzapine in first-hospitalization manic adolescents: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2006;31:1264–1273.PubMedGoogle Scholar
  204. 204.
    Moore CM, Biederman J, Wozniak J, Mick E, Aleardi M, Wardrop M, et al. Mania, glutamate/glutamine and risperi-done in pediatric bipolar disorder: a proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Affect Disord 2007;99:19–25.PubMedGoogle Scholar
  205. 205.
    Chang K, Gallelli KA, Howe M, Saxena K, Wagner CM, Spielman D, et al. Prefrontal neurometabolite changes following lamotrigine treatment in adolescents with bipolar depression. Neuropsychopharmacology 2005; 30:S102–S103.Google Scholar
  206. 206.
    Patel NC, DelBello MP, Cecil KM, Adler CM, Bryan HS, Stanford KE, et al. Lithium treatment effects on myo-inos-itol in adolescents with bipolar depression. Biol Psychiat 2006;60:998–1004.PubMedGoogle Scholar
  207. 207.
    Davanzo P, Thomas M, Barnett S, Yue K, Venkatraman T, Cunanan C, et al. Magnetic resonance spectroscopy in bipolar children before and after valproate treatment. Annual Meeting of the American Academy of Child & Adolescent Psychiatry; San Francisco, CA, 2002.Google Scholar
  208. 208.
    Moore CM, Biederman J, Wozniak J, Mick E, Aleardi M, Wardrop M, et al. Differences in brain chemistry in children and adolescents with attention deficit hyperactivity disorder with and without comorbid bipolar disorder: a proton magnetic resonance spectroscopy study. Am J Psychiat 2006;163:316–318.PubMedGoogle Scholar
  209. 209.
    Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiat 2005;10:900–919.Google Scholar
  210. 210.
    Patel NC, Patrick DM, Youngstrom EA, Strakowski SM, Delbello MP. Response and remission in adolescent mania: signal detection analyses of the young mania rating scale. J Am Acad Child Adol Psychiat 2007;46:628–635.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nick C. Patel
    • 1
  • Michael A. Cerullo
    • 2
  • David E. Fleck
    • 2
  • Jayasree J. Nandagopal
    • 2
  • Caleb M. Adler
    • 2
  • Stephen M. Strakowski
    • 2
  • Melissa P. DelBello
    • 2
  1. 1.Lifesynch; Department of Psychiatry & Health BehaviorMedical College of GeorgiaUSA
  2. 2.Division of Bipolar Disorders Research, Department of PsychiatryUniversity of CincinnatiCincinnatiUSA

Personalised recommendations