Skip to main content

Towards a Functional Neuroanatomy of Symptoms and Cognitive Deficits of Schizophrenia

  • Chapter
Book cover The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes
  • 677 Accesses

Abstract

The techniques of neuroimaging and non-invasive neurophysiology, alone or in combination, provide unprecedented access to the mechanisms of normal and pathological perception and cognition in the human brain. They are especially useful for the investigation of the neural basis of psychiatric symptoms, for which animal models cannot be obtained, for example hallucinations. Functional magnetic resonance imaging has revealed that auditory cortex, frontal language areas and parts of the limbic system are commonly active during auditory verbal hallucinations. The anatomical connectivity underlying this pathophy-siological network can be studied with another magnetic resonance imaging technique, diffusion tensor imaging. A similar rationale of combining functional and structural methods can be applied to other core symptoms of schizophrenia. The study of the pathophysiology of psychotic symptoms is closely linked to that of perceptual and cognitive deficits, which probably contribute to the generation of the clinical symptoms, but often precede or outlast them, making them important trait markers. Deficits of working memory and executive function have been associated with characteristic changes in late components of the event-related potential of the electroencephalogram (EEG) and distinctive patterns of pre-frontal metabolic activity. However, recent studies also showed differences at earlier stages of perceptual processing, affecting sensory cortices in both the auditory and the visual domain. In addition to overall activity, coherence within and across areas, as evidenced by synchronous oscillations of the EEG, seems to be impaired in schizophrenia during certain cognitive tasks. These findings from neuroimaging and electrophysiology are not only important for the cognitive neuroscience of schizophrenia, but can also inform models that explain schizophrenia at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentall RP. Madness Explained: Psychosis and Human Nature. London: Penguin Books. 2003.

    Google Scholar 

  2. Cardno A, Rijsdijk F, Sham P, Murray R, McGuffin P. A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry. 2002;159(4):539–545.

    Article  PubMed  Google Scholar 

  3. O'Daly O, Frangou S, Chitnis X, Shergill S. Brain structural changes in schizophrenia patients with persistent hallucinations. Psychiatry Res. 2007;156(1):15–21.

    Article  PubMed  Google Scholar 

  4. Shapleske J et al. A computational morphometric MRI study of schizophrenia: effects of hallucinations. Cereb Cortex. 2002;12:1331–1341.

    Google Scholar 

  5. Kubicki M, Park H, Westin C, et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage. 2005;26(4):1109–1118.

    Article  PubMed  CAS  Google Scholar 

  6. Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden D. The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage. 2008;39(4):1522–1532.

    Article  PubMed  Google Scholar 

  7. Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier SE, Schroth G, Lovblad K, Dierks T. Pathways that make voices: white matter changes in auditory hallucinations. Arch. Gen. Psychiatry 2004;61:658–668.

    Article  PubMed  Google Scholar 

  8. Rotarska-Jagiela A, van de Ven VG, Oertel V, Haenschel C, Maurer K, Linden DEJ. Disturbed anatomical and func-tional connectivity in schizophrenia: a combined DTI and fMRI study. Human Brain Mapping conference abs. 2006. 9. Crow TJ. Schizophrenia as failure of hemispheric dominance for language, Trends Neurosci. 1997;20:339–343.

    Google Scholar 

  9. Crow TJ. Schizophrenia as failure of hemispheric dominance for language, Trends Neurosci. 1997;20:339–343.

    Article  PubMed  CAS  Google Scholar 

  10. Dierks T, Linden D, Jandl M, et al. Activation of Heschl's gyrus during auditory hallucinations. Neuron. 1999;22(3): 615–621.

    Article  PubMed  CAS  Google Scholar 

  11. Lee S, Kim W, Chung Y, et al. A double blind study showing that two weeks of daily repetitive TMS over the left or right temporoparietal cortex reduces symptoms in patients with schizophrenia who are having treatment-refractory auditory hallucinations. Neurosci Lett. 2005;376(3):177–181.

    Article  PubMed  CAS  Google Scholar 

  12. Jandl M, Steyer J, Weber M, et al. Treating auditory hallucinations by transcranial magnetic stimulation: a randomized controlled cross-over trial. Neuropsychobiology. 2006;53(2):63–69.

    Article  PubMed  Google Scholar 

  13. Kircher T, Liddle P, Brammer M, Williams S, Murray R, McGuire P. Neural correlates of formal thought disorder in schizophrenia: preliminary findings from a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58(8):769–774.

    Article  PubMed  CAS  Google Scholar 

  14. Whalley H, Gountouna V, Hall J, et al. Correlations between fMRI activation and individual psychotic symptoms in un-medicated subjects at high genetic risk of schizophrenia. BMC Psychiatry. 2007;7:61.

    Article  PubMed  Google Scholar 

  15. Rotarska-Jagiela A, van de Ven VG, Oertel V, Haenschel C, Linden DEJ. Altered functional connectivity in schizophrenia patients compared to controls examined with self-organizing group independent component analysis. Human Brain Mapping conference abs. 2007.

    Google Scholar 

  16. Craddock N, Forty L. Genetics of affective (mood) disorders. Eur J Hum Genet. 2006;14(6):660 668.

    Article  PubMed  CAS  Google Scholar 

  17. Hill S, Harris M, Herbener E, Pavuluri M, Sweeney J. Neurocognitive allied phenotypes for schizophrenia and bipolar disorder. Schizophr Bull. 2008;34(4):743–759.

    Article  PubMed  Google Scholar 

  18. Oertel V, Rotarska-Jagiela A, van de Ven V, Haenschel C, Maurer K, Linden D. Visual hallucinations in schizophrenia investigated with functional magnetic resonance imaging. Psychiatry Res. 2007;156(3):269–273.

    Article  PubMed  Google Scholar 

  19. Ffytche D, Howard R, Brammer M, David A, Woodruff P, Williams S. The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci. 1998;1(8): 738–742.

    Article  PubMed  CAS  Google Scholar 

  20. Ffytche D. Visual hallucinations and the Charles Bonnet syndrome. Curr Psychiatry Rep. 2005;7(3):168–179.

    Article  PubMed  Google Scholar 

  21. Macdonald AW 3rd, Thermenos H, Barch D, Seidman L. Imaging Genetic Liability to Schizophrenia: Systematic Review of fMRI Studies of Patients' Nonpsychotic Relatives. Schizophr Bull. Jun 2008.

    Google Scholar 

  22. Egan M, Goldberg T, Kolachana B, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001;98(12): 6917–6922.

    Article  PubMed  CAS  Google Scholar 

  23. Manoach D. Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res. 2003;60(2–3):285–298.

    Article  PubMed  Google Scholar 

  24. Prvulovic D, Van de Ven V, Sack A, Maurer K, Linden D. Functional activation imaging in aging and dementia. Psychiatry Res. 2005;140(2):97–113.

    PubMed  Google Scholar 

  25. Prvulovic D, Hubl D, Sack A, et al. Functional imaging of visuospatial processing in Alzheimer's disease. Neuroimage. 2002;17(3):1403–1414.

    Article  PubMed  CAS  Google Scholar 

  26. Linden D. The working memory networks of the human brain. Neuroscientist. 2007;13(3):257–267.

    Article  PubMed  Google Scholar 

  27. Linden D, Bittner R, Muckli L, et al. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage. 2003;20(3):1518–1530.

    Article  PubMed  Google Scholar 

  28. Mayer J, Bittner R, Nikolić D, Bledowski C, Goebel R, Linden D. Common neural substrates for visual working memory and attention. Neuroimage. 2007;36(2):441–453.

    Article  PubMed  Google Scholar 

  29. Tan H-Y, Callicott JH, Weinberger DR. Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cer Cortex. 2007;17: i171–i181.

    Article  Google Scholar 

  30. Bittner R; Disturbed Functional Connectivity During Working MemoryEncoding, Maintenance, and retrieval in adolescents with early-onset schizophrenia - an event-related functional magnetic resonance imaging study. Schizophrenia Res. 2008;102(1–3): Supplement 2

    Google Scholar 

  31. Ochsner K. The social-emotional processing stream: five core constructs and their translational potential for schizophrenia and beyond. Biol Psychiatry. 2008;64(1):48–61.

    Article  PubMed  Google Scholar 

  32. Lee K, Brown W, Egleston P, et al. A functional magnetic resonance imaging study of social cognition in schizophrenia during an acute episode and after recovery. Am J Psychiatry. 2006;163(11):1926–1933.

    Article  PubMed  Google Scholar 

  33. Pinkham A, Hopfinger J, Pelphrey K, Piven J, Penn D. Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophr Res. 2008;99(1–3): 164–175.

    Article  PubMed  Google Scholar 

  34. Jackson MC, Wu C-Y, Linden DEJ, Raymond JE. Enhanced visual short-term memory for angry faces. J Experiment Psychol — Human Percept Perform, in press.

    Google Scholar 

  35. Kuperberg G, Deckersbach T, Holt D, Goff D, West W. Increased temporal and prefrontal activity in response to semantic associations in schizophrenia. Arch Gen Psychiatry. 2007;64(2):138–151.

    Article  PubMed  Google Scholar 

  36. Butler PD, Javitt DC. Early-stage visual processing defi-cits in schizophrenia. Curr Opin Psychiatry. 2005;18: 151–157.

    Article  PubMed  Google Scholar 

  37. Butler PD, Zemon V, Schechter I, Saperstein AM, Hoptman MJ, Lim KO, Revheim N, Silipo G, Javitt DC. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry. 2005 May;62(5): 495–504.

    Article  PubMed  Google Scholar 

  38. Haenschel C, Bittner R, Haertling F, et al. Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-related potentials and functional magnetic resonance imaging. Arch Gen Psychiatry. 2007;64(11): 1229–1240.

    Article  PubMed  Google Scholar 

  39. Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW. Abnormal neural synchrony in schizophrenia. J Neurosci 2003;23:7407–7411.

    PubMed  CAS  Google Scholar 

  40. Uhlhaas P, Linden D, Singer W, et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci. 2006;26(31): 8168–8175.

    Article  PubMed  CAS  Google Scholar 

  41. Haenschel C, Bittner RA, Haertling F, Rotarska-Jagiela A, Maurer K, Singer W, Linden DEJ, Rodriguez E. Disorders of work memory processes and oscillation for young patients with schizophrenia. Nervenarzt. 2007;78 (Suppl 2):90.

    Google Scholar 

  42. Uhlhaas P, Haenschel C, Nikolic D, Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull. Jun 2008;34:927, 943.

    Article  Google Scholar 

  43. Phillips WA, Silverstein SM. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 2003;26:65–138.

    PubMed  Google Scholar 

  44. Linden D. What, when, where in the brain? Exploring mental chronometry with brain imaging and electrophysiology. Rev Neurosci. 2007;18(2):159–171.

    PubMed  Google Scholar 

  45. Kasai K, Shenton M, Salisbury D, et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry. 2003;160(1):156–164.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Linden, D. (2009). Towards a Functional Neuroanatomy of Symptoms and Cognitive Deficits of Schizophrenia. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9831-4_3

Download citation

Publish with us

Policies and ethics