Skip to main content

Embedding Multi-Task Address-Event-Representation Computation

  • Chapter
Intelligent Technical Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 38))

  • 664 Accesses

Abstract

Address-Event-Representation, AER, is a communication protocol that is intended to transfer neuronal spikes between bioinspired chips. There are several AER tools to help to develop and test AER based systems, which may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. Although these tools reach very high bandwidth at the AER communication level, they require the use of a personal computer to allow the higher level processing of the event information. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of an embedded multi-task ER tool, connecting and programming it for processing Address-Event information from a spiking generator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, et al., “AER building blocks for multi-layer multi-chip neuromorphic vision systems”. Neural Information rocessing Systems Conference, 2005.

    Google Scholar 

  2. M. Sivilotti,, “Wiring considerations in analog VLSI systems, with application to field programmable networks”. PhD thesis, California Institute of Technology asadena, CA, USA, 1991.

    Google Scholar 

  3. A. Cohen, R. Douglas, C. Koch, et al., Report to the National Science Foundation: Workshop on Neuromorphic Engineering, 2001.

    Google Scholar 

  4. M. Mahowald, “VLSI analogs of neuronal visual processing: a synthesis of form and function”. PhD thesis, California Institute of Technology, 1992.

    Google Scholar 

  5. K. Boahen, “Communicating neuronal ensembles between neuromorphic chips”, Neuromorphic Systems Engineering, 1998.

    Google Scholar 

  6. R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez, and B. Linares- Barranco, “An arbitrary kernel convolution AER-transceiver chip for real-time image filtering. Circuits and Systems”, ISCAS 2006. Proceedings. 2006.

    Google Scholar 

  7. M. Oster, and Liu, “A winner-take-all spiking network with spiking inputs”, IEEE Conference Electronics, Circuits and Systems, pp. 203–206, 2004.

    Google Scholar 

  8. H. Riis, and P. Hafliger, “Spike based learning with weak multi-level static memory. Circuits and Systems”, 2004. ISCAS’04, 2004.

    Google Scholar 

  9. P. Lichtsteiner, and T. Delbruck, “64$×$64 Event-driven logarithmic temporal derivative silicon retina”. IEEE Workshop on Charge-Coupled Devices and Advanced mage Sensors, pp. 157–160, 2005.

    Google Scholar 

  10. A. Linares-Barranco, F. Gómez-Rodríguez, A. Jiménez-Fernández, et al., “Using FPGA for visuo-motor control with a silicon retina and a humanoid robot”, IEEE International Symposium on Circuits and Systems, pp. 1192–1195, 2007.

    Google Scholar 

  11. A. Linares-Barranco, A. Jimenez-Fernandez, R. Paz-Vicente, et al., “An AER-based actuator interface for controlling an anthropomorphic robotic hand”, LNCS, 4528:479, 2007.

    Google Scholar 

  12. A. Jimenez-Fernandez, R. Paz-Vicente, M. Rivas, et al., “AER-based robotic closed-loop control system”, IEEE International Symposium on Circuits and Systems, pp. 1044–1047, 2008.

    Google Scholar 

  13. T. Delbruck, and P. Lichtsteiner, “Fast sensory motor control based on event-based hybrid neuromorphic-procedural system”, IEEE International Symposium on Circuits and Systems, pp. 845–848, 2007.

    Google Scholar 

  14. T. Teixeira, E. Culurciello, J. Park, et al., “Address-event imagers for sensor networks: evaluation and modeling”, International conference on Information processing in sensor networks, pp. 458–466, 2006.

    Google Scholar 

  15. D. Bauer, A. Belbachir, N. Donath, et al., “Embedded vehicle speed estimation system using an asynchronous temporal contrast vision sensor”, EURASIP Journal on Embedded Systems, 2007(1):34–34.

    Google Scholar 

  16. A. Linares-Barranco, G. Jimenez-Moreno, B. Linares-Barranco, and A. Civit-Balcells, “On algorithmic rate-coded AER generation”, IEEE Transactions on Networks, 17(3):771–788, 2006.

    Article  Google Scholar 

  17. M. Oster, A. Whatley, et al., “A hardware/software framework for real-time spiking systems”, Int. Conf. on Artificial Neural Networks, 3696:161–166, 2005.

    Google Scholar 

  18. E. Chicca, A.M. Whatley, P. Lichtsteiner, et al., “A multichip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity”, IEEE Transactions on Circuits and Systems, 54(5):981–993, 2007.

    Article  Google Scholar 

  19. P. Lichtsteiner, C. Posch, T. Delbruck, “A 128 X 128 120db 30mw asynchronous vision sensor that responds to relative intensity change. Solid-State Circuits”, IEEE International Conference Digest of Technical Papers, pp. 2060–2069, 2006.

    Google Scholar 

  20. R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-Barranco, “A 5 Meps $100 USB 2.0 address-event monitor-sequencer interface”, IEEE International Symposium on Circuits and Systems, 2007.

    Google Scholar 

  21. Intel-Press, Intel PXA255 Processor Developer’s Manual, volume 278693-002. Intel- Press, 2004.

    Google Scholar 

  22. K. Boahen, and A. Andreou, “A contrast sensitive silicon retina with reciprocal synapses”, Advances in Neural Information Processing Systems, 4:764–772, 1992.

    Google Scholar 

  23. E. Culurciello, R. Etienne-Cummings and K. Boahen, “A biomorphic digital image sensor”. IEEE Journal of Solid-State Circuits, 38(2):281–294, 2003.

    Article  Google Scholar 

  24. R. Paz, F. Gomez-Rodriguez, M. Rodriguez, et al., “Test infrastructure for addressevent- representation communications”, Work-Conference on Artificial Neural Networks (IWANN’2005). LNCS, pp. 518–526, 2005.

    Google Scholar 

  25. F. Gomez-Rodriguez, R. Paz, L. Miro, et al., “Two hardware implementations of the exhaustive synthetic AER generation method”. Computational Intelligence and Bioinspired Systems. LNCS, 3512:534–540, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Luján-Martínez, C., Linares-Barranco, A., Jiménez, G., Civit, A. (2009). Embedding Multi-Task Address-Event-Representation Computation. In: Martínez Madrid, N., Seepold, R.E. (eds) Intelligent Technical Systems. Lecture Notes in Electrical Engineering, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9823-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9823-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9822-2

  • Online ISBN: 978-1-4020-9823-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics