Advertisement

Digital Open-Loop Control of a Piezoelectric Valve for Household Appliances

  • Daniele Petraccini
  • Massimo Conti
  • Fortunato Nocera
  • Lorenzo Morbidelli
  • Fabrizio Concettoni
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 38)

Abstract

Piezoelectric materials are widely used as sensors and actuators in many applications. They allow efficient digital control of mechanical systems, but suffer from nonlinearity and hysteresis. This chapter presents a new digital open-loop control of piezoelectric bender for real-time applications in domestic appliances, for which strong specifications are good accuracy and low cost. The control algorithm, implemented in a microcontroller, solves the problems of nonlinearity and hysteresis. The chapter presents experimental results of the prototype that has been realized in the Indesit Company laboratories for future applications on domestic appliances.

Keywords

Piezoelectric actuator Hysteresis Open-loop control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Wei Tech Ang, F.A. Garmon, P.K. Khosla, C.N. Riviere. Modeling rate-dependent hysteresis in piezoelectric actuators. In Proceedings of the 2003 IEEE/RSJ, International Conference on Intelligent Robots and Systems, Vol. 2, 1975–1980, October 2003.Google Scholar
  3. 3.
    C.V. Newcomb and I. Flinn. Improving the linearity of piezoelectric ceramic actuators. Electronics Letters, Vol. 18, No. 11, pages 442–444, May 1982.CrossRefGoogle Scholar
  4. 4.
    C. Jan and C-L. Hwang, Robust Control Design for a Piezoelectric Actuator System with Dominant Hysteresis. In Proc. 26th Conf. of the IEEE IECON2000, Vo1.3, pp. 1515–20.Google Scholar
  5. 5.
    G. Tao and P. V. Kokotovic. Adaptive Control of Plants with Unknown Hystereses. IEEE Tran. Auto. & Control, Vo1. 40, No. 2, pages 200–212, February 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S.-S. Ku, U. Pinsopon, S. Cetinkunt, and S. Nakjima. Design, Fabrication, and Real-time Neural Network of a Three-Degrees-of-Freedon Nanopositioner. IEEE/ASME Trans. Mechatronics, Vol. 5, No. 3, pages 273–280, September 2000.CrossRefGoogle Scholar
  7. 7.
    Y. Lv and Y. Wei. Study on open-loop precision positioning control of a micropositioning platform using a piezoelectric actuator. Fifth World Congress on Intelligent Control and Automation, 2004, Vol. 2, pages 1255–1259, June 2004.CrossRefGoogle Scholar
  8. 8.
    G. Song, J. Zhao, X. Zhou and J.A. De Abreu-Garcia. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Transactions on Mechatronics, Vol. 10, Issue 2, pages 198–209, April 2005.CrossRefGoogle Scholar
  9. 9.
    C.-H. Ru, L. Sun, and M.-X. Kong. Adaptive inverse control for piezoelectric actuator based on hysteresis model. In Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vol. 5, pages 3189–3193, August 2005.CrossRefGoogle Scholar
  10. 10.
    R. Changhai, S. Lining, R. Weibin, and C. Liguo. Adaptive inverse control for piezoelectric actuator with dominant hysteresis. In Proceedings of the 2004 IEEE Int. Conf. on Control Applications, Vol. 2, pages 973–976, September 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Daniele Petraccini
    • 1
  • Massimo Conti
    • 1
  • Fortunato Nocera
    • 2
  • Lorenzo Morbidelli
    • 2
  • Fabrizio Concettoni
    • 2
  1. 1.D.I.B.E.T., Università Politecnica delle MarcheItaly;
  2. 2.Indesit Company S.p.A.Italy

Personalised recommendations