Skip to main content

Magnetic Resonance Imaging Of Metastatic Bone Disease

  • Chapter
Bone Metastases

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 12))

Abstract

Early diagnosis of bone metastases is crucial in order to determine the prognosis and optimize therapy. Traditional methods, such as plain radiography or bone scintigraphy, lack either sensitivity or specificity. Computed tomography (CT) is quite sensitive, however, its ability to detect early deposits is limited. FDG {PET – CT} scan detects metastatic bone disease before occurrence of osteoblastic activity. Magnetic resonance imaging (MRI) has been shown to be the most sensitive imaging technique, with a sensitivity of up to 100% reported and its specificity was reported to reach 97%.

MRI of bone metastases depends on the degree of bone resorption or deposition. The lesion pattern may be lytic, sclerotic or mixed. Adequate characterization of lesions depends on fat and water distribution in bone marrow, normal bone trabeculae, tissue vascularization, cell density and bone oedema. T1 – weighted spin – echo (SE), T2 – weighted turbo SE and STIR are the sequences most frequently used. Gadolinium enhancement demonstrates areas of greatest tumor activity. Diffusion-weighted imaging helps in the discrimination between benign and malignant vertebral body compression fractures. Whole-body MRI is a feasible alternative to bone scintigraphy in evaluating the entire skeleton.

MRI is the modality of choice for the evaluation of bone metastases. It’s a non invasive technique, presenting great tissue contrast, without the use of ionizing radiation. MRI depicts metastases in an early stage and provides additional information about tumor extent. It helps in tumor screening and staging, as well as in the control of the disease progression and the post treatment evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Porter AT and Davis LP (1994) Systemic radionuclide therapy of bone metastases with strontium-89. Oncology (Williston Park) 8: 93–96

    CAS  Google Scholar 

  2. Traill Z, Richards MA, and Moore NR (1995) MRI of metastatic bone disease. Clin Orthop Relat Res 312: 76–88

    PubMed  Google Scholar 

  3. Ghanem N, Uhl M, Brink I, et al. (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55: 41–55

    Article  PubMed  CAS  Google Scholar 

  4. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171: 1151–1153

    Article  PubMed  CAS  Google Scholar 

  5. Vanel D (2003) MRI of bone metastases: the choice of the sequence. Cancer Imaging 4: 30–35

    Article  Google Scholar 

  6. Daffner RH, Lupetin AR, Dash N, et al. (1986) MRI in the detection of malignant infiltration of bone marrow. AJR Am J Roentgenol 146: 353–358

    PubMed  CAS  Google Scholar 

  7. Hanna SL, Fletcher BD, Fairclough DL, et al. (1991) Magnetic resonance imaging of disseminated bone marrow disease in patients treated for malignancy. Skelet Radiol 20: 79–84

    Article  CAS  Google Scholar 

  8. Ghanem N, Altehoefer C, Högerle S, et al. (2002) Comparative diagnostic value and therapeutic relevance of magnetic resonance imaging and bone marrow scintigraphy in patients with metastatic solid tumors of the axial skeleton. Eur J Radiol 43: 256–261

    Article  PubMed  Google Scholar 

  9. Avrahami E, Tadmor R, Dally O, et al. (1989) Early MR demonstration of spinal metastases in patients with normal radiographs and CT and radionuclide bone scans. J Comput Assist Tomogr 13: 598–602

    Article  PubMed  CAS  Google Scholar 

  10. Delbeke D, Powers TA, and Sandler MP (1989) Correlative radionuclide and magnetic resonance imaging in evaluation of the spine. Clin Nucl Med 14: 742–749

    Article  PubMed  CAS  Google Scholar 

  11. Kattapuram SV, Khurana JS, Scott JA, et al. (1990) Negative scintigraphy with positive magnetic resonance imaging in bone metastases. Skelet Radiol 19: 113–116.

    Article  CAS  Google Scholar 

  12. Frank JA, Ling A, Patronas NJ, et al. (1990) Detection of malignant bone tumors: MR imaging vs scintigraphy. AJR Am J Roentgenol 155: 1043–1048.

    PubMed  CAS  Google Scholar 

  13. Algra PR, Bloem JL, Tissing H, et al. (1991) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11: 219–232

    PubMed  CAS  Google Scholar 

  14. Yuh WT, Zachar CK, Barloon TJ, et al. (1989) Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 172: 215–218

    PubMed  CAS  Google Scholar 

  15. Nakanishi K, Kobayashi M, Takahashi S, et al. (2005) Whole body MRI for detecting metastatic bone tumor: comparison with bone scintigrams. Magn Reson Med Sci 4: 11–17

    Article  PubMed  Google Scholar 

  16. Steinborn MM, Heuck AF, Tiling R, et al. (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23: 123–129

    Article  PubMed  CAS  Google Scholar 

  17. Eustace S, Tello R, DeCarvalho V, et al. (1997) A comparison of whole-body turbo STIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 169: 1655–1661

    PubMed  CAS  Google Scholar 

  18. Albert K (2007) Evaluating bone metastases. Clin J Oncol Nurs 11: 193–197

    Article  PubMed  Google Scholar 

  19. Nyman R, Rehn S, Glimelius B, et al. (1987) MRI in diffuse malignant bone marrow diseases. Acta Radiol 28: 199–205

    Article  PubMed  CAS  Google Scholar 

  20. Colman LK, Porter BA, Redmond J III, et al. (1988) Early diagnosis of spinal metastases by CT and MR studies. J Comput Assist Tomogr 12: 423–426

    Article  PubMed  CAS  Google Scholar 

  21. Mehta RC, Wilson MA, and Perlman SB (1989) False negative bone scan in extensive metastatic disease: CT and MRI findings. J Comput Assist Tomogr 13: 717–719.

    Article  PubMed  CAS  Google Scholar 

  22. Kellenberger CJ, Epelman M, Miller SF, et al. (2004) Fast STIR Whole-Body MR Imaging in Children. RadioGraphics 24: 1317–1330

    Article  PubMed  Google Scholar 

  23. Sze G (1988) Gadolinium DTPA in spinal disease. Radiol Clin North Am 26: 1009–1024

    PubMed  CAS  Google Scholar 

  24. Saifuddin A, Bann K, Ridgway JP, et al. (1994) Bone marrow blood supply in gadolinium-enhanced magnetic resonance imaging. Skeletal Radiol 23: 455–457

    Article  PubMed  CAS  Google Scholar 

  25. Fransson A, Grampp S, and Imhof H (1999) Effects of trabecular bone on marrow relaxation in the tibia. Magn Reson Imaging 17: 69–82

    Article  PubMed  CAS  Google Scholar 

  26. Sebag GH and Moore SG (1990) Effect of trabecular bone on the appearance of marrow in gradient-echo imaging of the appendicular skeleton. Radiology 174: 855–859

    PubMed  CAS  Google Scholar 

  27. Raya JG, Dietrich O, Reiser MF, et al. (2006) Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging 24: 1207–1220

    Article  PubMed  Google Scholar 

  28. Glover GH and Schneider E (1991) Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 18: 371–383

    Article  PubMed  CAS  Google Scholar 

  29. Seiderer M, Staebler A, and Wagner H (1999) MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time. Eur Radiol 9: 652–661

    Article  PubMed  CAS  Google Scholar 

  30. Peh WCG and Muttarak M (2003) Clinics in Diagnostic Imaging (82). Singapore Med J 44: 101–105

    PubMed  CAS  Google Scholar 

  31. Peh WCG and Muttarak M (2002) Bone metastases. eMedicine J 3(3) http://www.emedicine.com/radio/topic88.htm Cited 1 September 2008

  32. Modic MT, Steinberg PM, Ross JS, et al. (1988) Degenerative disc disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166: 193–199

    PubMed  CAS  Google Scholar 

  33. Grenier N, Grossman RI, Schiebler ML, et al. (1987) Degenerative lumbar disc disease: pitfalls and usefulness of MR imaging in detection of the vacuum phenomenon. Radiology 164: 861–865

    PubMed  CAS  Google Scholar 

  34. Hajek PC, Baker LL, Goobar JE, et al. (1987) Focal fat deposition in axial bone marrow: MR characteristics. Radiology 162: 245–249

    PubMed  CAS  Google Scholar 

  35. Modic MT, Masaryk TJ, Ross JS, et al. (1988) Imaging of degenerative disc disease. Radiology 168: 177–186

    PubMed  CAS  Google Scholar 

  36. Sobel DF, Zyroff J, and Thorne RP (1987) Diskogenic vertebral sclerosis: MR imaging. J Comput Assist Tomogr 11: 855–858

    Article  PubMed  CAS  Google Scholar 

  37. Hayes CW, Jensen ME, and Conway WF (1989) Non Neoplastic lesions of vertebral bodies: findings in magnetic resonance imaging. Radiographics 9: 883–903

    PubMed  CAS  Google Scholar 

  38. Cuénod CA, Laredo JD, Chevret S, et al. (1996) Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology 199: 541–549

    PubMed  Google Scholar 

  39. Frager D, Elkin C, Swerdlow M, et al. (1988) Subacute osteoporotic compression fracture: misleading magnetic resonance appearance. Skelet Radiol 17: 123–126

    Article  CAS  Google Scholar 

  40. Abanoz R, Hakyemez B, and Parlak M. (2003) Diffusion-weighted imaging of acute vertebral compression: differential diagnosis of benign versus malignant pathologic fractures. Tani Girisim Radyol 9: 176–183

    PubMed  Google Scholar 

  41. Holscher HC, van der Woude HJ, Hermans J, et al. (1994) Magnetic resonance relaxation times of normal tissue in the course of chemotherapy: a study in patients with bone sarcoma. Skeletal Radiol 23: 181–185

    Article  PubMed  CAS  Google Scholar 

  42. Edelstyn GA, Gillespie PJ, and Grebbell FS (1967) The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol 18: 158–162

    CAS  Google Scholar 

  43. Taoka T, Mayr NA, Lee HJ, et al. (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. AJR Am J Roentgenol 176: 1525–1530

    PubMed  CAS  Google Scholar 

  44. Gosfield E III, Alavi A, and Kneeland B (1993) Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 34: 2191–2198

    PubMed  Google Scholar 

  45. Eustace SJ and Nelson E (2004) Whole body magnetic resonance imaging. BMJ 328: 1387–1388

    Article  Google Scholar 

  46. Williams MP, Cherryman GR, and Husband JE (1989) MRI in suspected metastatic spinal cord compression. Clin Radiol 40: 286–290

    Article  PubMed  CAS  Google Scholar 

  47. Carmody RF, Yang PJ, Seeley GW, et al. (1989) Spinal cord compression due to metastatic disease: diagnosis with MR imaging versus myelography. Radiology 173: 225–229

    PubMed  CAS  Google Scholar 

  48. Godersky JC, Smoker WR, and Knutzon R (1987) Use of magnetic resonance imaging in the evaluation of metastatic spinal disease. Neurosurgery 21: 676–680

    Article  PubMed  CAS  Google Scholar 

  49. Krol G, Sze G, Malkin M, et al. (1988) MR of cranial and spinal meningeal carcinomatosis: comparison with CT and myelopathy. AJNR 9: 709–714

    Google Scholar 

  50. Schmidt GP, Schoenberg SO, Schmid R, et al. (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17: 939–949

    Article  PubMed  Google Scholar 

  51. Galasko CSB (1977) The role of skeletal scintigraphy in detection of metastatic breast cancer. World J Surg 1: 295–298

    Article  PubMed  CAS  Google Scholar 

  52. Haubold-Reuter BG, Duewell S, Schilcher BR, et al. (1993) The value of bone scintigraphy, bone marrow scintigraphy and fast spin-echo magnetic resonance imaging in staging of patients with malignant solid tumours: a prospective study. Eur J Nucl Med 20: 1063–1069

    Article  PubMed  CAS  Google Scholar 

  53. Ghanem NA, Pache G, Lohrmann C, et al. (2007). MRI and (18)FDG-PET in the assessment of bone marrow infiltration of the spine in cancer patients. Eur Spine J 16: 1907–1912

    Article  PubMed  Google Scholar 

  54. Kumar J, Seith A, Kumar A, et al. (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38: 953–962

    Article  PubMed  Google Scholar 

  55. Schmidt GP, Kramer H, Reiser MF, et al. (2007) Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology. Top Magn Reson Imaging 18: 193–202

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterini Solomou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Solomou, E., Kazantzi, A., Romanos, O., Kardamakis, D. (2009). Magnetic Resonance Imaging Of Metastatic Bone Disease. In: Kardamakis, D., Vassiliou, V., Chow, E. (eds) Bone Metastases. Cancer Metastasis – Biology and Treatment, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9819-2_8

Download citation

Publish with us

Policies and ethics