Liver Cancer pp 221-235 | Cite as

Diagnosis of Hepatocellular Carcinoma: Multidetector-Row Computed Tomography and Magnetic Resonance Imaging

  • Hiromitsu Onishi
  • Takamichi Murakami
  • Hironobu Nakamura
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 5)

Diagnostic imaging plays an important role in the diagnosis of early-stage hepato-cellular carcinoma (HCC); with contrast-enhanced computed tomography (CT) and magnetic resonance (MR) imaging examination being especially important for the precise and objective evaluation of HCC. At present, both imaging techniques are widely used for diagnosis of HCC. For the CT examination, a contrast-enhanced dynamic study consisting of an arterial phase and a portal venous phase is useful for detecting HCC, while multidetector-row helical CT (MDCT) scanner offers major advantages for the evaluation of HCC due to its faster acquisition capability and higher spatial resolution.

For contrast-enhanced MR imaging, a dynamic study using gadolinium-based contrast material is also useful for evaluating HCC. In addition, a tissue-specific contrast material such as super-paramagnetic iron oxide (SPIO), which is available only for MR imaging is a valuable aid for the diagnosis of HCC. This chapter presents an overview of current multidetector-row helical computed tomography (MDCT) technique including the underlying principles of contrast injection and MR techniques, including recent advanced technology for the diagnosis of HCC.


Arterial Phase Portal Venous Phase Early Arterial Phase Hypervascular Hepatocellular Carcinoma Double Arterial Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Awai, K., Takada, K., Onishi, H., and Hori, S. 2002. Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224: 757–763.PubMedCrossRefGoogle Scholar
  2. Awai, K., Hiraishi, K., and Hori, S. 2004. Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230: 142–150.PubMedCrossRefGoogle Scholar
  3. Bae, K.T. 2003. Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227: 809–816.PubMedCrossRefGoogle Scholar
  4. Brink, J.A., Heiken, J.P., Forman, H.P., Sagel, S.S., Molina, P.L., and Brown, P.C. 1995. Hepatic spiral CT: reduction of dose of intravenous contrast material. Radiology 197: 83–88.PubMedGoogle Scholar
  5. Chakraborty, D.P., and Winter L.H. 1990. Free-response methodology: alternate analysis and a new observer-performance experiment. Radiology 174: 873–881.PubMedGoogle Scholar
  6. Choi, B.I., Kim, H.C., Han, J.K., Park, J.H., Kim, Y.I., Kim, S.T., Lee, H.S., Kim, C.Y., and Han, M.C. 1992. Therapeutic effect of transcatheter oily chemoembolization therapy for encapsulated nodular hepatocellular carcinoma: CT and pathologic findings. Radiology 182: 709–713.PubMedGoogle Scholar
  7. Dromain, C., de Baere, T., Elias, D., Kuoch, V., Ducreux, M., Boige, V., Petrow, P., Roche, A., and Sigal, R. 2002. Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MR imaging follow-up. Radiology 223: 255–262.PubMedCrossRefGoogle Scholar
  8. Heiken, J.P., Brink, J.A., McClennan, B.L., Sagel, S.S., Crowe, T.M., and Gaines, M.V. 1995. Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195: 353–357.PubMedGoogle Scholar
  9. Hori, M., Murakami, T., Kim, T, Iannaccone, R., Abe, H., Onishi, H., Tomoda, K., Catalano, C, Passariello, R., and Nakamura, H. 2006. Hemodynamic characterization of focal hepatic lesions: role of ferucarbotran-enhanced dynamic MR imaging using T2-weighted multishot spin-echo echo planar sequence. J. Magn. Reson. Imag. 23: 509–519.CrossRefGoogle Scholar
  10. Iannaccone, R., Laghi, A., Catalano, C., Rossi, P., Mangiapane, F., Murakami, T., Hori, M., Piacentini, F., Nofroni, I., and Passariello, R. 2005. Hepatocellular carcinoma: role of unen-hanced and delayed phase multi-detector row helical CT in patients with cirrhosis. Radiology 234: 460–467.PubMedCrossRefGoogle Scholar
  11. Imai, Y., Murakami, T., Yoshida, S., Nishikawa, M., Ohsawa, M., Tokunaga, K., Murata, M., Shibata, K., Zushi, S., Kurokawa, M., Yonezawa, T., Kawata, S., Takamura, M., Nagano, H., Sakon, M., Monden, M., Wakasa, K., and Nakamura, H. 2000. Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology 32: 205–212.PubMedCrossRefGoogle Scholar
  12. Kadoya, M., Matsui, O., Takashima, T., and Nonomura, A. 1992. Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology 183: 819–825.PubMedGoogle Scholar
  13. Kalra, M.K., Maher, M.M., Sahani, D.V., Blake, M.A., Hahn, P.F., Avinash, G.B., Toth, T.L., Halpern, E., and Saini, S. 2003. Low-dose CT of the abdomen: evaluation of image improvement with use of noise reduction filters pilot study. Radiology 228: 251–256.PubMedCrossRefGoogle Scholar
  14. Kalra, M.K., Maher, M.M., Toth, T.L., Schmidt, B., Westerman, B.L., Morgan, H.T., and Saini, S. 2004. Techniques and applications of automatic tube current modulation for CT. Radiology 233: 649–657.PubMedCrossRefGoogle Scholar
  15. Kang, B.K., Lim, J.H., Kim, S.H., Choi, D., Lim, H.K., Lee, W.J., and Lee, S.J. 2003. Preoperative depiction of hepatocellular carcinoma: ferumox-ides-enhanced MR imaging versus triple-phase helical CT. Radiology 226: 79–85.PubMedCrossRefGoogle Scholar
  16. Kawata, S., Murakami, T., Kim, T., Hori, M., Federle, M.P., Kumano, S., Sugihara, E., Makino, S., Nakamura, H., and Kudo, M. 2002. Multidetector CT: diagnostic impact of slice thickness on detection of hypervascular hepa-tocellular carcinoma. AJR. Am. J. Roentgenol. 179: 61–66.PubMedGoogle Scholar
  17. Kim, T., Murakami, T., Oi, H., Matsushita, M., Kishimoto, H., Igarashi, H., Nakamura, H., and Okamura, J. 1995. Detection of hypervascular hepatocellular carcinoma by dynamic MRI and dynamic spiral CT. J. Comput. Assist. Tomogr. 19: 948–954.PubMedCrossRefGoogle Scholar
  18. Kim, T., Murakami, T., Hori, M., Takamura, M., Takahashi, S., Okada, A., Kawata, S., Cruz, M., Federle, M.P., and Nakamura, H. 2002. Small hypervascular hepatocellular carcinoma revealed by double arterial phase CT performed with single breath-hold scanning and automatic bolus tracking. AJR Am. J. Roentgenol. 178: 899–904.PubMedGoogle Scholar
  19. Kim, Y.K., Kim, C.S., Kwak, H.S., and Lee, J.M. 2004. Three-dimensional dynamic liver MR imaging using sensitivity encoding for detection of hepatocellular carcinomas: comparison with superparamagnetic iron oxide-enhanced MR imaging. J. Magn. Reson. Imag. 20: 826–837.CrossRefGoogle Scholar
  20. Kim, Y.K., Kwak, H.S., Kim, C.S., Chung, G.H., Han, Y.M., and Lee, J.M. 2006. Hepatocellular Carcinoma in Patients with Chronic Liver Disease: Comparison of SPIO-enhanced MR Imaging and 16-Detector Row CT. Radiology 238: 531–541.PubMedCrossRefGoogle Scholar
  21. Kuwatsuru, R., Kadoya, M., Ohtomo, K., Tanimoto, A., Hirohashi, S., Murakami, T., Tanaka, Y., Yoshikawa, K., and Katayama, H. 1999. Clinical late phase II trials of MultiHance (Gd-BOPTA) for the magnetic resonance imaging of liver tumors in Japan. J. Comput. Assist. Tomogr. 23: 65–74.Google Scholar
  22. Lee, J.D., Lee, J.M., Kim, S.W., Kim, C.S., and Mun, W.S. 2001. MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J. Radiol. 2: 151–158.PubMedCrossRefGoogle Scholar
  23. Mori, K., Yoshioka, H., Takahashi, N., Yamaguchi, M., Ueno, T., Yamaki, T., and Saida, Y. 2005. Triple arterial phase dynamic MRI with sensitivity encoding for hypervascular hepatocellular carcinoma: comparison of the diagnostic accuracy among the early, middle, late, and whole triple arterial phase imaging. AJR Am. J. Roentgenol. 184: 63–69.PubMedGoogle Scholar
  24. Murakami, T., Nakamura, H., Hori, S., Tomoda, K., Mitani, T., Nakanishi, K., Hashimoto, T., Tsuda, K., Kozuka, T., Monden, M., and Wakasa, K. 1993a. Detection of viable tumor cells in hepatocellular carcinoma following transcatheter arterial chem-oembolization with iodized oil. Pathologic correlation with dynamic turbo-FLASH MR imaging with Gd-DTPA. Acta. Radiol. 34: 399–403.Google Scholar
  25. Murakami, T., Nakamura, H., Tsuda, K., Nakanishi, K., Hori, S., Tomoda, K., Mitani, T., Kozuka, T., Monden, M., and Wakasa, K. 1993b. Treatment of hepatocellular carcinoma by chemoembolization: evaluation with 3DFT MR imaging. AJR Am. J. Roentgenol. 160: 295–299.Google Scholar
  26. Murakami, T., Baron, R.L., Peterson, M.S., Oliver, J.H. 3rd, Davis, P.L., Confer, S.R., and Federle, M.P. 1996. Hepatocellular carcinoma: MR imaging with mangafodipir trisodium (Mn-DPDP). Radiology 200: 69–77.PubMedGoogle Scholar
  27. Murakami, T., Kim, T., Takamura, M., Hori, M., Takahashi, S., Federle, M.P., Tsuda, K., Osuga, K., Kawata, S., Nakamura, H., and Kudo, M. 2001. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology 218: 763–767.PubMedGoogle Scholar
  28. Murakami, T., Onishi, H., Mikami, K., Iannaccone, R., Federle, M.P., Kim, T., Hori, M., Okada, A., Marukawa, T., Higashihara, H., Passariello, R., and Nakamura, H. 2006. Determining the optimal timing for early arterial phase hepatic CT imaging by measuring abdominal aortic enhancement in variable contrast injection protocols. J. Comput. Assist. Tomogr. 30: 206–211.PubMedCrossRefGoogle Scholar
  29. Onishi, H., Matsushita, M., Murakami, T., Tono, T., Okamoto, S., Aoki, Y., Iannaccone, R., Hori, M., Kim, T., Osuga, K., Tomoda, K., Passariello, R., and Nakamura, H. 2004. MR appearances of radiofrequency thermal ablation region: his-topathologic correlation with dog liver models and an autopsy case. Acad. Radiol. 11: 1180– 1189.PubMedCrossRefGoogle Scholar
  30. Pauleit, D., Textor, J., Bachmann, R., Conrad, R., Flacke, S., Layer, G., Kreft, B., and Schild, H. 2002. Hepatocellular carcinoma: detection with gadolinium- and ferumoxides-enhanced MR imaging of the liver. Radiology 222: 73–80.PubMedCrossRefGoogle Scholar
  31. Takahashi, S., Murakami, T., Takamura, M., Kim, T., Hori, M., Narumi, Y., Nakamura, H., and Kudo, M. 2002. Multi-detector row helical CT angiog-raphy of hepatic vessels: depiction with dual-arterial phase acquisition during single breath hold. Radiology 222: 81–88.PubMedCrossRefGoogle Scholar
  32. Ward, J., Guthrie, J.A., Scott, D.J., Atchley, J., Wilson, D., Davies, M.H., Wyatt, J.I., and Robinson, P.J. 2000. Hepatocellular carcinoma in the cirrhotic liver: double-contrast MR imaging for diagnosis. Radiology 216: 154–162.PubMedGoogle Scholar
  33. Yamashita, Y., Komohara, Y., Takahashi, M., Uchida, M., Hayabuchi, N., Shimizu, T., and Narabayashi, I. 2000. Abdominal helical CT: evaluation of optimal doses of intravenous contrast material -a prospective randomized study. Radiology 216: 718–723.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Hiromitsu Onishi
    • 1
  • Takamichi Murakami
    • 1
  • Hironobu Nakamura
    • 1
  1. 1.Department of RadiologyOsaka University Graduate School of MedicineYamadaoka, Suita-cityJapan

Personalised recommendations