Skip to main content

Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals

  • Chapter
  • First Online:
Trends in Computational Nanomechanics

Abstract

Predicting the integrity of metallic thin films deposited on semiconductors for microelectromechanical systems (MEMS) applications requires a precise understanding of surface effects on plasticity in materials with nano-sized grains. Experimentally, the use of nanoscale contact probes has been very successful to characterize the dependence of flow stress on mean grain size in nanocrystalline metals. From atomistic simulations, several models of plastic yielding for metal indentation have also been proposed based on the nucleation and propagation of lattice dislocations, and their interaction with grain boundaries beneath penetrating tips. However, model refinement is needed to include the characteristics of materials whose grain size is much smaller than the typical plastic zones found in contact experiments. Particularly, cooperative deformation processes mediated by grain boundaries, such as grain rotation, deformation twinning, and stress-driven grain coarsening, can simultaneously emerge for very small grain sizes (< 20 nm), thus making a predictive understanding of plastic yielding elusive. This chapter summarizes our recent progress in using multiscale modeling to gain fundamental insight into the underlying mechanisms of surface plasticity in nanocrystalline face-centered cubic metals deformed by nanoscale contact probes. Two numerical approaches to model contact-induced plasticity in nanocrystalline materials, the quasicontinuum method and parallel molecular dynamics simulation, are reviewed. Using these techniques, we discuss the role of a grain boundary network on the incipient plasticity of nanocrystalline Al films deformed by wedge-like cylindrical tips, as well as the processes of stress-driven grain growth in nanocrystalline films subjected to nanoindentation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basrour, S. and Robert, L. (2000) Mater. Sci. Eng. A 288: 270–274.

    Article  Google Scholar 

  2. Gobet, J., Cardot, F., Bergqvist, J. and Rudolf, F. (1993) J. Micromech. Microeng. 3: 123–130.

    Article  CAS  Google Scholar 

  3. Larsen, K.P., et al. (2003) Sens. Actuators A 103: 156–164.

    Article  Google Scholar 

  4. Martinez, S., et al. (2002) Sens. Actuators A 99: 41–44.

    Article  Google Scholar 

  5. Pasa, A.A. and Schwarzacher, W. (1999) Phys. Stat. Sol. A 173: 73.

    Article  CAS  Google Scholar 

  6. Krauss, A.R., et al. (2001) Diam. Relat. Mater. 10: 1952–1961.

    Article  CAS  Google Scholar 

  7. Tao, S. and Li, D.Y. (2006) Nanotechnology 17: 65–78.

    Article  CAS  Google Scholar 

  8. Schiotz, J. and Jacobsen, K.W. (2003) Science 301: 1357–1359.

    Article  CAS  Google Scholar 

  9. Trelewicz, J.R. and Schuh, C.A. (2007) Acta Materialia 55: 5948–5958.

    Article  CAS  Google Scholar 

  10. Chang, S.Y. and Chang, T.K. (2007) J. Appl. Phys. 101: 033507.

    Article  Google Scholar 

  11. Tsuchiya, T., Tabata, O., Sakata, J. and Taga, Y. (1996) IEEJ Trans. 116: 441.

    Google Scholar 

  12. Sharpe, W.N., Yuan, B. and Edwards, R.L. (1997) J. Microelectromech. Syst. 6: 193–199.

    Article  Google Scholar 

  13. Chasiotis, I. and Knauss, W.G. (2002) Exp. Mech. 42: 51–57.

    Article  CAS  Google Scholar 

  14. Hemker, K.J. and Sharpe, W.N. (2007) Annu. Rev. Mater. Res. 37: 93–126.

    Article  CAS  Google Scholar 

  15. Espinosa, H.D., Prorok, B.C. and Fischer, M. (2003) J. Mech. Phys. Solids 51: 47–67.

    Article  CAS  Google Scholar 

  16. Nieman, G.W., Weertman, J.R. and Siegel, R.W. (1989) Scripta Metall. 23: 2013–2018.

    Article  CAS  Google Scholar 

  17. Elsherik, A.M., Erb, U., Palumbo, G. and Aust, K.T. (1992) Scripta Metall. Mater. 27: 1185–1188.

    Article  CAS  Google Scholar 

  18. Fougere, G.E., Weertman, J.R. and Siegel, R.W. (1995) Nanostruct. Mater. 5: 127–134.

    Article  Google Scholar 

  19. Qin, X.Y., Wu, X.J. and Zhang, L.D. (1995) Nanostruct. Mater. 5: 101–110.

    Article  CAS  Google Scholar 

  20. Farhat, Z.N., Ding, Y., Northwood, D.O. and Alpas, A.T. (1996) Mater. Sci. Eng. A 206: 302–313.

    Article  Google Scholar 

  21. Malow, T.R., Koch, C.C., Miraglia, P.Q. and Murty, K.L. (1998) Mater. Sci. Eng. A 252: 36–43.

    Article  Google Scholar 

  22. Sanders, P.G., Eastman, J.A. and Weertman, J.R. (1997) Acta Mater. 45: 4019–4025.

    Article  CAS  Google Scholar 

  23. Gang, T. and Sansoz, F. (2007) Unpublished Research.

    Google Scholar 

  24. Minor, A.M., et al. (2006) Nat. Mater. 5: 697–702.

    Article  CAS  Google Scholar 

  25. Yang, B. and Vehoff, H. (2007) Acta Materialia 55: 849–856.

    Article  CAS  Google Scholar 

  26. Andrievski, R.A., Kalinnikov, G.V., Jauberteau, J. and Bates, J. (2000) J. Mater. Sci. 35: 2799–2806.

    Article  CAS  Google Scholar 

  27. Van Vliet, K.J., Tsikata, S. and Suresh, S. (2003) Appl. Phys. Lett. 83: 1441–1443.

    Article  Google Scholar 

  28. Chen, M.W., et al. (2003) Science 300: 1275–1277.

    Article  CAS  Google Scholar 

  29. Jin, M., Minor, A.M., Stach, E.A. and Morris, J.W. (2004) Acta Materialia 52: 5381–5387.

    Article  CAS  Google Scholar 

  30. Zhang, K., Weertman, J.R. and Eastman, J.A. (2004) Appl. Phys. Lett. 85: 5197–5199.

    Article  CAS  Google Scholar 

  31. Zhang, K., Weertman, J.R. and Eastman, J.A. (2005) Appl. Phys. Lett. 87: 061921.

    Article  Google Scholar 

  32. Gianola, D.S., et al. (2006) Acta Materialia 54: 2253–2263.

    Article  CAS  Google Scholar 

  33. Hall, E.O. (1951) Proc. Phys. Soc. B 64: 747–753.

    Article  Google Scholar 

  34. Petch, N.J. (1953) J. Iron Steel Inst. 174: 25–28.

    CAS  Google Scholar 

  35. Schiotz, J., Di Tolla, F.D. and Jacobsen, K.W. (1998) Nature 391: 561–563.

    Article  Google Scholar 

  36. Feichtinger, D., Derlet, P.M. and Van Swygenhoven, H. (2003) Phys. Rev. B 67: 024113.

    Article  Google Scholar 

  37. Ma, X.L. and Yang, W. (2003) Nanotechnology 14: 1208–1215.

    Article  CAS  Google Scholar 

  38. Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M. and Nix, W.D. (2003) J. Mech. Phys. Solids 51: 901–920.

    Article  CAS  Google Scholar 

  39. Hasnaoui, A., Derlet, P.M. and Van Swygenhoven, H. (2004) Acta Materialia 52: 2251–2258.

    Article  CAS  Google Scholar 

  40. Jang, H. and Farkas, D. (2004) Mater. Res. Soc. Symp. Proc. 821: P8.17.1–P8.17.6.

    Google Scholar 

  41. Saraev, D. and Miller, R.E. (2005) Model. Simulat. Mater. Sci. Eng. 13: 1089–1099.

    Article  CAS  Google Scholar 

  42. Kim, K.J., Yoon, J.H., Cho, M.H. and Jang, H. (2006) Mater. Lett. 60: 3367–3372.

    Article  CAS  Google Scholar 

  43. Szlufarska, I., Nakano, A. and Vashishta, P. (2005) Science 309: 911–914.

    Article  CAS  Google Scholar 

  44. Dupont, V. and Sansoz, F. (2008) Acta Mater. 56: 6013–6026.

    Article  CAS  Google Scholar 

  45. Luan, B.Q., et al. (2006) Phys. Rev. E 74: 11.

    Google Scholar 

  46. Sansoz, F. and Dupont, V. (2006) Appl. Phys. Lett. 89: 111901.

    Article  Google Scholar 

  47. Sansoz, F. and Dupont, V. (2007) Mater. Sci. Eng. C 27: 1509–1513.

    Article  CAS  Google Scholar 

  48. Dupont, V. (2008) Ph.D. Thesis. University of Vermont.

    Google Scholar 

  49. Zimmerman, J.A., Gao, H.J. and Abraham, F.F. (2000) Model. Simulat. Mater. Sci. Eng. 8: 103–115.

    Article  CAS  Google Scholar 

  50. Plimpton, S. (1995) J. Comput. Phys. 117: 1–19.

    Article  CAS  Google Scholar 

  51. Miller, R.E. and Tadmor, E.B. (2002) J. Comput. Aid Mater. Des. 9: 203–239.

    Article  CAS  Google Scholar 

  52. Rapaport, D.C. (2004) The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, UK, 549.

    Google Scholar 

  53. Hoover, W.G. (1985) Phys. Rev. A 31: 1695–1697.

    Article  Google Scholar 

  54. Shenoy, V.B., et al. (1999) J. Mech. Phys. Solids 47: 611–642.

    Article  Google Scholar 

  55. Sansoz, F. and Molinari, J.F. (2007) Thin Solid Films 515/6: 3158–3163.

    Article  Google Scholar 

  56. Johnson, K.L. (1985) Contact Mechanics. Cambridge University Press, Cambridge, UK, 452.

    Google Scholar 

  57. Voronoi, G.F. (1908) J. Reine Undangew. Math. 134: 199–287.

    Google Scholar 

  58. Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C. (1998) Phys. Rev. B 58: 11085–11088.

    Article  CAS  Google Scholar 

  59. Ackland, G.J. and Jones, A.P. (2006) Phys. Rev. B 73: 054104.

    Article  Google Scholar 

  60. Daw, M.S. and Baskes, M.I. (1983) Phys. Rev. Lett. 50: 1285–1288.

    Article  CAS  Google Scholar 

  61. Mishin, Y., Farkas, D., Mehl, M.J. and Papaconstantopoulos, D.A. (1999) Phys. Rev. B 59: 3393–3407.

    Article  CAS  Google Scholar 

  62. Voter, A.F. and Chen, S.P. (1987) Mater. Res. Soc. Symp. Proc. 82: 175.

    CAS  Google Scholar 

  63. Sansoz, F. and Molinari, J.F. (2005) Acta Materialia 53: 1931–1944.

    CAS  Google Scholar 

  64. Sansoz, F. and Molinari, J.F. (2004) Scripta Materialia 50: 1283–1288.

    Article  CAS  Google Scholar 

  65. Van Swygenhoven, H., Derlet, P.M. and Froseth, A.G. (2004) Nat. Mater. 3: 399–403.

    Article  Google Scholar 

  66. Zhang, H., Upmanyu, N. and Srolovitz, D.J. (2005) Acta Materialia 53: 79–86.

    Article  CAS  Google Scholar 

  67. Haslam, A.J., et al. (2001) Mater. Sci. Eng. A 318: 293–312.

    Article  Google Scholar 

  68. Huntington, H.B. and Seitz, F. (1942) Phys. Rev. 61: 315.

    Article  CAS  Google Scholar 

  69. Cahn, J.W., Mishin, Y. and Suzuki, A. (2006) Acta Materialia 54: 4953–4975.

    Article  CAS  Google Scholar 

  70. Cahn, J.W. and Taylor, J.E. (2004) Acta Materialia 52: 4887–4898.

    Article  CAS  Google Scholar 

  71. Gutkin, M.Y., Mikaelyan, K.N. and Ovid’ko, I.A. (2008) Scripta Materialia 58: 850–853.

    Article  CAS  Google Scholar 

  72. Gutkin, M.Y. and Ovid’ko, I.A. (2005) Appl. Phys. Lett. 87: 251916.

    Article  Google Scholar 

  73. Lu, G., Zhang, Q., Kioussis, N. and Kaxiras, E. (2001) Phys. Rev. Lett. 8709: 095501.

    Article  Google Scholar 

  74. Lu, G., et al. (2002) Phys. Rev. B 65: 064102.

    Article  Google Scholar 

  75. Elsener, A., Politano, O., Derlet, P.M. and Van Swygenhoven, H. (2008) Model. Simulat. Mater. Sci. Eng. 16: 025006.

    Article  Google Scholar 

  76. Chou, S.Y., Krauss, P.R. and Renstrom, P.J. (1996) J. Vac. Sci. Technol. B 14: 4129–4133.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Support from National Science Foundation CAREER program (grant no DMR-0747658) and the computational resources provided by the Vermont Advanced Computing Center, which is supported by NASA (grant no NNX 06AC88G), are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Dupont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dupont, V., Sansoz, F. (2010). Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_6

Download citation

Publish with us

Policies and ethics