Skip to main content

Multiscale Molecular Dynamics and the Reverse Mapping Problem

  • Chapter
  • First Online:
Trends in Computational Nanomechanics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 9))

Abstract

Multiscale techniques are becoming increasingly important for molecular simulation as a result of interest in increasingly complex problems involving events occurring over multiple time and length scales. Here, inspired by the success of the multiscale quantum mechanics/molecular mechanics (QM/MM) methods, we introduce a hybrid, adaptive resolution, multiscale molecular dynamics method that combines accurate, atomistic, modeling of key regions of the system with a coarse-grained modeling of the remainder of the system. Hybrid multiscale methods must solve the interfacial hand-shaking problem of coupling together different levels of description in different spatial regions of the system; in addition, to implement an adaptive resolution algorithm to correctly model diffusive systems, one must have a procedure in place to dynamically change the representation of a molecule, either from a finer to a coarser level or vice versa. We propose a solution to these problems through a detailed energy analysis and the use of a rotational dynamics to align molecular fragments. The algorithms we propose significantly advance the state-of-the-art and should serve to spur significant advances in our ability to model complex chemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wesolowski, T. A., Warshel, A., J. Phys. Chem. 1993, 97, 8050.

    Article  CAS  Google Scholar 

  2. Jacob, C., Neugebauer, J., Visscher, L., J. Comput. Chem. 2008, 29, 1011.

    Article  CAS  Google Scholar 

  3. Cramer, C. J., Truhlar, D. G., Chem. Rev. 1999, 99, 2161.

    Article  CAS  Google Scholar 

  4. Tomasi, J., Mennucci, B., Cammi, R., Chem. Rev. 2005, 105, 2999.

    Article  CAS  Google Scholar 

  5. Tomasi, J., Persico, M., Chem. Rev. 1994, 94, 2027.

    Article  CAS  Google Scholar 

  6. Gao, J., in Reviews in Computational Chemistry, edited by Lipkowitz, K., Boyd, D., Volume 7, pp. 119–185, 119, VCH, New York, 1992.

    Google Scholar 

  7. Ensing, B., Nielsen, S. O., Moore, P. B., Klein, M. L., Parrinello, M., J. Chem. Theory Comput. 2007, 3, 1100.

    Article  CAS  Google Scholar 

  8. Praprotnik, M., Site, L. D., Kremer, K., J. Chem. Phys. 2005, 123, 224106.

    Article  Google Scholar 

  9. Heyden, A., Truhlar, D. G., J. Chem. Theory Comput. 2008, 4, 217.

    Article  CAS  Google Scholar 

  10. Shi, Q., Izvekov, S., Voth, G. A., J. Phys. Chem. B 2006, 110, 15045.

    Article  CAS  Google Scholar 

  11. Neri, M., Anselmi, C., Cascella, M., Maritan, A., Carloni, P., Phys. Rev. Lett. 2005, 95, 218102.

    Article  Google Scholar 

  12. Villa, E., Balaeff, A., Mahadevan, L., Schulten, K., Multiscale Model. Simul. 2004, 2, 527.

    Article  CAS  Google Scholar 

  13. Dupuy, L. M., Tadmor, E. B., Miller, R., Phillips, R., Phys. Rev. Lett. 2005, 95, 060202.

    Article  CAS  Google Scholar 

  14. Diestler, D. J., Zhou, H., Feng, R., Zeng, X. C., J. Chem. Phys. 2006, 125, 064705.

    Article  CAS  Google Scholar 

  15. Rudd, R. E., Broughton, J. Q., Phys. Stat. Sol. B 2000, 217, 251.

    Article  CAS  Google Scholar 

  16. Izvekov, S., Voth, G. A., J. Phys. Chem. B 2005, 109, 2469.

    Article  CAS  Google Scholar 

  17. Liu, P., Izvekov, S., Voth, G. A., J. Phys. Chem. B 2007, 111, 11566.

    Article  Google Scholar 

  18. Lyman, E., Ytreberg, F., Zuckerman, D., Phys. Rev. Lett. 2006, 96, 028105.

    Article  Google Scholar 

  19. Lyman, E., Zuckerman, D. M., J. Chem. Theory Comput. 2006, 2, 656.

    Article  CAS  Google Scholar 

  20. Christen, M., van Gunsteren, W., J. Chem. Phys. 2006, 124, 154106.

    Article  Google Scholar 

  21. Liu, P., Voth, G. A., J. Chem. Phys. 2007, 126, 045106.

    Article  Google Scholar 

  22. Csányi, G., Albaret, T., Payne, M. C., DeVita, A., Phys. Rev. Lett. 2004, 93, 175503.

    Article  Google Scholar 

  23. Hoogerbrugge, P. J., Koelman, J. M. V. A., Europhys. Lett. 1992, 19, 155.

    Article  Google Scholar 

  24. Smith, D. E., Harris, C. B., J. Chem. Phys. 1990, 92, 1304.

    Article  CAS  Google Scholar 

  25. Turq, P., Lantelme, F., Friedman, H. L., J. Chem. Phys. 1977, 66, 3039.

    Article  CAS  Google Scholar 

  26. Laio, A., Parrinello, M., Proc. Natl. Acad. Sci. USA 2002, 99, 12562.

    Article  CAS  Google Scholar 

  27. Ensing, B., Vivo, M. D., Liu, Z. W., Moore, P. B., Klein, M. L., Acc. Chem. Res. 2006, 39, 73.

    Article  CAS  Google Scholar 

  28. Nielsen, S. O., Lopez, C. F., Srinivas, G., Klein, M. L., J. Phys. Condens. Mater. 2004, 16, R481.

    Article  CAS  Google Scholar 

  29. Henderson, R. L., Phys. Lett. A 1974, 49A, 197.

    Article  Google Scholar 

  30. Lyubartsev, A. P., Laaksonen, A., Phys. Rev. E 1995, 52, 3730.

    Article  CAS  Google Scholar 

  31. Soper, A. K., Chem. Phys. 1996, 202, 295.

    Article  CAS  Google Scholar 

  32. Akkermans, R., Briels, W., J. Chem . Phys. 2001, 114, 1020.

    Article  CAS  Google Scholar 

  33. Jain, S., Garde, S., Kumar, S. K., Ind. Eng. Chem. Res. 2006, 45, 5614.

    Article  CAS  Google Scholar 

  34. Njo, S. L., van Gunsteren, W. F., Mueller-Plathe, F., J. Chem. Phys. 1995, 102, 6199.

    Article  CAS  Google Scholar 

  35. Ercolessi, F., Adams, J. B., Europhys. Lett. 1994, 26, 583.

    Article  CAS  Google Scholar 

  36. Izvekov, S., Parrinello, M., Burnham, C. J., Voth, G. A., J. Chem. Phys. 2004, 120, 10896.

    Article  CAS  Google Scholar 

  37. Maurer, P., Laio, A., Hugosson, H. W., Colombo, M. C., Rothlisberger, U., J. Chem. Theory Comput. 2007, 3, 628.

    Article  CAS  Google Scholar 

  38. de Pablo, J. J., Curtin, W. A., MRS Bull. 2007, 32, 905.

    Google Scholar 

  39. Nosé, S. J., J. Chem. Phys. 1984, 81, 511.

    Article  Google Scholar 

  40. Hoover, W. G., Phys. Rev. A 1985, 31, 1695.

    Article  Google Scholar 

  41. Parrinello, M., Rahman, A., Phys. Rev. Lett. 1980, 45, 1196.

    Article  CAS  Google Scholar 

  42. Bussi, G., Donadio, D., Parrinello, M., J. Chem. Phys. 2007, 126, 014101.

    Article  Google Scholar 

  43. MacKerel Jr., A., Brooks III, C., Nilsson, L., Roux, B., Won, Y., Karplus, M., CHARMM: The energy function and its parameterization with an overview of the program, in The Encyclopedia of Computational Chemistry, edited by v. R. Schleyer et al., P., Volume 1, pp. 271–277, John Wiley & Sons: Chichester, 1998.

    Google Scholar 

  44. Jorgensen, W., Madura, J., Swenson, C., J. Am. Chem. Soc. 1984, 106, 6638.

    Article  CAS  Google Scholar 

  45. Abrams, C. F., J. Chem. Phys. 2005, 123, 234101.

    Article  Google Scholar 

  46. Praprotnik, M., Kremer, K., Site, L. D., J. Phys. A Math. Theor. 2007, 40, F281.

    Article  Google Scholar 

  47. Praprotnik, M., Kremer, K., Site, L. D., Phys. Rev. E 2007, 75, 017701.

    Article  Google Scholar 

  48. Heyden, A., Lin, H., Truhlar, D. G., J. Phys. Chem. B 2007, 111, 2231.

    Article  CAS  Google Scholar 

  49. Taylor, C. J., Kriegman, D. J., IEEE Trans. Rob. Autom. 1998, 14, 417.

    Article  Google Scholar 

  50. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes, Cambridge University Press: New York, 1992.

    Google Scholar 

  51. Nielsen, S. O., Ensing, B., Moore, P. B., Klein, M. L., Coarse grained to atomistic mapping algorithm: a tool for multiscale simulations, in Multiscale simulation methods for nanomaterials, edited by Ross, R., Mohanty, S., pp. 73–88, John Wiley and Sons, Inc.; Hoboken, NJ, 2008.

    Google Scholar 

  52. Krysl, P., Endres, L., Int. J. Numer. Methods Eng. 2005, 62, 2154.

    Article  Google Scholar 

  53. Nielsen, S. O., Lopez, C. F., Srinivas, G., Klein, M. L., J. Chem. Phys. 2003, 119, 7043.

    Article  CAS  Google Scholar 

  54. Praprotnik, M., Matysiak, S., Site, L. D., Kremer, K., Clementi, C., J. Phys. Condens. Mater. 2007, 19, 292201.

    Article  Google Scholar 

  55. Matysiak, S., Clementi, C., Praprotnik, M., Kremer, K., Site, L. D., J. Chem. Phys. 2008, 128, 024503.

    Article  Google Scholar 

  56. Praprotnik, M., Site, L. D., Kremer, K., Phys. Rev. E 2006, 73, 066701.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Preston B. Moore, Peter G. Bolhuis, Michael L. Klein and Michele Parrinello for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Ensing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ensing, B., Nielsen, S.O. (2010). Multiscale Molecular Dynamics and the Reverse Mapping Problem. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_2

Download citation

Publish with us

Policies and ethics