Skip to main content

Computational Molecular Biomechanics: A Hierarchical Multiscale Framework With Applications to Gating of Mechanosensitive Channels of Large Conductance

  • Chapter
  • First Online:
Trends in Computational Nanomechanics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 9))

Abstract

Understanding the mechanism of mechanobiological processes at the molecular level is an important challenge in modern biophysics. Despite recent advances in experimental and numerical techniques, the intrinsic multiscale nature of mechanobiological processes makes it difficult to meet such challenge in many systems of interest. Recently, a continuum-mechanics based hierarchical modeling and simulation framework has been established and applied to study the mechanical responses and gating behaviors of a prototypical system, the mechanosensitive channel of large conductance (MscL) in bacteria Escherichia coli (E. coli), from which several putative gating mechanisms have been testified and new insights deduced. This article reviews these latest findings and suggests possible improvements for future modeling work. The computationally efficient and versatile continuum-based protocol is expected to make contributions to a variety of mechanobiology problems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamill, O.P. and Martinac, B. (2001) Physiological Reviews 81: 685.

    CAS  Google Scholar 

  2. Ingber, D.E. (2006) FASEB Journal 20: 811.

    Article  CAS  Google Scholar 

  3. Kamm, R.D. and Kaazempur-Mofrad, M.R. (2004) Mechanics and Chemistry of Biosystems 1: 201.

    Google Scholar 

  4. Martinac, B. (2004) Journal of Cell Science 117: 2449.

    Article  CAS  Google Scholar 

  5. Chen, X., Cui, Q., Yoo, J., Tang, Y., and Yethiraj, A. (2008) Biophysical Journal 95: 563.

    Article  CAS  Google Scholar 

  6. Tang, Y., Cao, G., Chen, X., Yoo, J., Yethiraj, A., and Cui, Q. (2006) Biophysical Journal 91: 1248.

    Article  CAS  Google Scholar 

  7. Tang, Y., Yoo, J., Yethiraj, A., Cui, Q., and Chen, X. (2008) Biophysical Journal 95: 581.

    Article  CAS  Google Scholar 

  8. Gustin, M.C., Zhou, X.L., Martinac, B., and Kung, C. (1988) Science 242: 762.

    Article  CAS  Google Scholar 

  9. Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T., and Rees, D.C. (1998) Science 282: 2220.

    Article  CAS  Google Scholar 

  10. Sukharev, S., Betanzos, M., Chiang, C.S., and Guy, H.R. (2001) Nature 409: 720.

    Article  CAS  Google Scholar 

  11. Sukharev, S. and Anishkin, A. (2004) Trends in Neurosciences 27: 345.

    Article  CAS  Google Scholar 

  12. Sukharev, S.I., Sigurdson, W.J., Kung, C., and Sachs, F. (1999) Journal of General Physiology 113: 525.

    Article  CAS  Google Scholar 

  13. Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R., and Kung, C. (1994) Nature 368: 265.

    Article  CAS  Google Scholar 

  14. Wiggins, P. and Philips, R. (2004) Proceedings of the National Academy of Sciences of the United States of America 101: 4071.

    Article  CAS  Google Scholar 

  15. Kloda, A. and Martinac, B. (2001) Cell Biochemistry and Biophysics 34: 321.

    Article  CAS  Google Scholar 

  16. Perozo, E., Kloda, A., Cortes, D.M., and Martinac, B. (2002) Nature Structural Biology 9: 696.

    Article  CAS  Google Scholar 

  17. Elmore, D.E. and Dougherty, D.A. (2003) Biophysical Journal 85: 1512.

    Article  CAS  Google Scholar 

  18. Gullingsrud, J. and Schulten, K. (2004) Biophysical Journal 86: 3496.

    Article  CAS  Google Scholar 

  19. Nagle, J.F. and Tristram-Nagle, S. (2000) Biochimica Et Biophysica Acta-Reviews on Biomembranes 1469: 159.

    Article  CAS  Google Scholar 

  20. Evans, E. and Hochmuth, R. (1978) Topics in Membrane and Transport 10: 1.

    Article  CAS  Google Scholar 

  21. Turner, M.S. and Sens, P. (2004) Physical Review Letters 93: 118103.

    Article  Google Scholar 

  22. Perozo, E. (2006) Nature Reviews Molecular Cell Biology 7: 109.

    Article  CAS  Google Scholar 

  23. Kung, C. (2005) Nature 436: 647.

    Article  CAS  Google Scholar 

  24. Wiggins, P. and Phillips, R. (2005) Biophysical Journal 88: 880.

    Article  CAS  Google Scholar 

  25. Markin, V.S. and Sachs, F. (2004) Biophysical Journal 86: 370A.

    Google Scholar 

  26. Martinac, B., Buechner, M., Delcour, A.H., Adler, J., and Kung, C. (1987) Proceedings of the National Academy of Sciences of the United States of America 84: 2297.

    Article  CAS  Google Scholar 

  27. Sukharev, S.I., Blount, P., Martinac, B., and Kung, C. (1997) Annual Review of Physiology 59: 633.

    Article  CAS  Google Scholar 

  28. Sukharev, S., Durell, S.R., and Guy, H.R. (2001) Biophysical Journal 81: 917.

    Article  CAS  Google Scholar 

  29. Ursell, T., Huang, K.C., Peterson, E., and Phillips, R. (2007) Plos Computational Biology 3: 803.

    Article  CAS  Google Scholar 

  30. Gullingsrud, J. and Schulten, K. (2003) Biophysical Journal 85: 2087.

    Article  CAS  Google Scholar 

  31. Karplus, M. and McCammon, J.A. (2002) Nature Structural Biology 9: 788.

    Article  CAS  Google Scholar 

  32. Gullingsrud, J., Kosztin, D., and Schulten, K. (2001) Biophysical Journal 80: 2074.

    Article  CAS  Google Scholar 

  33. Kong, Y.F., Shen, Y.F., Warth, T.E., and Ma, J.P. (2002) Proceedings of the National Academy of Sciences of the United States of America 99: 5999.

    Article  CAS  Google Scholar 

  34. Schlitter, J., Engels, M., Kruger, P., Jacoby, E., and Wollmer, A. (1993) Molecular Simulation 10: 291.

    Article  CAS  Google Scholar 

  35. Bilston, L.E. and Mylvaganam, K. (2002) FEBS Letters 512: 185.

    Article  CAS  Google Scholar 

  36. Meyer, G.R., Gullingsrud, J., Schulten, K., and Martinac, B. (2006) Biophysical Journal 91: 1630.

    Article  CAS  Google Scholar 

  37. Lu, G., Tadmor, E.B., and Kaxiras, E. (2006) Physical Review B 73: 024108.

    Article  Google Scholar 

  38. Yefimov, S., van der Giessen, E., Onck, P.R., and Marrink, S.J. (2008) Biophysical Journal 94: 2994.

    Article  CAS  Google Scholar 

  39. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M. (1983) Journal of Computational Chemistry 4: 187.

    Article  CAS  Google Scholar 

  40. Neria, E., Fischer, S., and Karplus, M. (1996) Journal of Chemical Physics 105: 1902.

    Article  CAS  Google Scholar 

  41. Choe, S. and Sun, S.X. (2005) Journal of Chemical Physics 122: 244912.

    Article  Google Scholar 

  42. ABAQUS (2004) Abaqus 6.4 user’s manual. 2004: ABAQUS Inc.

    Google Scholar 

  43. Gu, L.Q., Liu, W.H., and Martinac, B. (1998) Biophysical Journal 74: 2889.

    Article  CAS  Google Scholar 

  44. Anishkin, A., Chiang, C.S., and Sukharev, S. (2005) Journal of General Physiology 125: 155.

    Article  CAS  Google Scholar 

  45. Anishkin, A. and Kung, C. (2005) Current Opinion in Neurobiology 15: 397.

    Article  CAS  Google Scholar 

  46. Ling, C.B. (1948) Journal of Applied Physics 19: 77.

    Article  Google Scholar 

  47. Hartmann, C. and Delgado, A. (2004) PAMM 4: 316.

    Article  Google Scholar 

  48. Gordon, V.D., Chen, X., Hutchinson, J.W., Bausch, A.R., Marquez, M., and Weitz, D.A. (2004) Journal of the American Chemical Society 126: 14117.

    Article  CAS  Google Scholar 

  49. Sanner, M. (2008), http://www.scripps.edu/∼sanner/html/msmshome.html.

  50. Bathe, M. (2008) Proteins-Structure Function and Bioinformatics 70: 1595.

    Article  CAS  Google Scholar 

  51. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001) Proceedings of the National Academy of Sciences of the United States of America 98: 10037.

    Article  CAS  Google Scholar 

  52. Feig, M. and Brooks, C.L. (2004) Current Opinion in Structural Biology 14: 217.

    Article  CAS  Google Scholar 

  53. Zhou, Y.C., Holst, M., and McCammon, J.A. (2008) Journal of Mathematical Analysis and Applications 340: 135.

    Article  Google Scholar 

  54. Akitake, B., Anishkin, A., Liu, N., and Sukharev, S. (2007) Nature Structural & Molecular Biology 14: 1141.

    Article  CAS  Google Scholar 

  55. Zwanzig, R. (2001) Non-Equilibrium Statistical Mechanics. New York: Oxford University Press.

    Google Scholar 

  56. Dhaka, A., Viswanath, V., and Patapoutian, A. (2006) Annual Review of Neuroscience 29: 135.

    Article  CAS  Google Scholar 

  57. Ramsey, I.S., Delling, M., and Clapham, D.E. (2006) Annual Review of Physiology 68: 619.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, X., Cui, Q. (2010). Computational Molecular Biomechanics: A Hierarchical Multiscale Framework With Applications to Gating of Mechanosensitive Channels of Large Conductance. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_18

Download citation

Publish with us

Policies and ethics