Skip to main content

The Use of Qsar and Computational Methods in Drug Design

  • Chapter
  • First Online:
Recent Advances in QSAR Studies

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 8))

Abstract

The application of quantitative structure–activity relationships (QSARs) has significantly impacted the paradigm of drug discovery. Following the successful utilization of linear solvation free-energy relationships (LSERs), numerous 2D- and 3D-QSAR methods have been developed, most of them based on descriptors for hydrophobicity, polarizability, ionic interactions, and hydrogen bonding. QSAR models allow for the calculation of physicochemical properties (e.g., lipophilicity), the prediction of biological activity (or toxicity), as well as the evaluation of absorption, distribution, metabolism, and excretion (ADME). In pharmaceutical research, QSAR has a particular interest in the preclinical stages of drug discovery to replace tedious and costly experimentation, to filter large chemical databases, and to select drug candidates. However, to be part of drug discovery and development strategies, QSARs need to meet different criteria (e.g., sufficient predictivity). This chapter describes the foundation of modern QSAR in drug discovery and presents some current challenges and applications for the discovery and optimization of drug candidates

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selassie CD (2003) History of quantitative structure-activity relationships. In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery, 6th edn. Wiley, New York

    Google Scholar 

  2. Drayer JI, Burns JP (1995) From discovery to market: the development of pharmaceuticals. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery, 5th edn. Willey, New York

    Google Scholar 

  3. Lesko LJ, Rowland M, Peck CC et al. (2000) Optimizing the science of drug development: Opportunities for better candidate selection and accelerated evaluation in humans. Eur J Pharm Sci 10:9–14

    Article  Google Scholar 

  4. DiMasi JA (1995) Success rates for new drugs entering clinical testing in the United States. Clin Pharmacol Ther 58:1–14

    Article  CAS  Google Scholar 

  5. Kennedy T (1997) Managing the drug discovery/development interface. Drug Disc Today 2:436–444

    Article  Google Scholar 

  6. Wenlock MC, Austin RP, Barton P et al. (2003) A comparison of physiochemical property profiles of development and marketed oral drugs. J Med Chem 46:1250–1256

    Article  CAS  Google Scholar 

  7. Lin JH, Lu AYH (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    CAS  Google Scholar 

  8. Cruciani G, Crivori P, Carrupt P-A et al. (2000) Molecular fields in quantitative structure permeation relationships: the VolSurf approach. J Mol Struct: THEOCHEM 503:17–30

    Article  CAS  Google Scholar 

  9. Lombardo F, Gifford E, Shalaeva MY (2003) In silico ADME prediction: Data, models, facts and myths. Mini Rev Med Chem 8:861–875

    Article  Google Scholar 

  10. Hansch C, Leo A, Mekapati SB et al. (2004) QSAR and ADME. Bioorg Med Chem 12:3391–3400

    Article  CAS  Google Scholar 

  11. Lipinski CA, Lombardo F, Dominy BW et al. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 23:3–25

    Article  CAS  Google Scholar 

  12. Yamashita F, Hashida M (2003) Mechanistic and empirical modeling of skin permeation of drugs. Adv Drug Del Rev 55:1185–1199

    Article  CAS  Google Scholar 

  13. Wang Z, Yan A, Yuan Q et al. (2008) Explorations into modeling human oral bioavailability. Eur J Med Chem 43:2442–2452

    Article  CAS  Google Scholar 

  14. Hansch C, Steward AR (1964) The use of substituent constants in the analysis of the structure–activity relationship in penicillin derivatives. J Med Chem 7:691–694

    Article  CAS  Google Scholar 

  15. Hansch C, Maloney PP, Fujita T et al. (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature (London, UK) 194:178–180

    Article  CAS  Google Scholar 

  16. Hansch C, Lien EJ (1968) An analysis of the structure–activity relationship in the adrenergic blocking activity of the βhaloalkylamines. Biochem Pharmacol 17:709–720

    Article  CAS  Google Scholar 

  17. Hansch C, Leo A, Nikaitani D (1972) Additive-constitutive character of partition coefficients. J Org Chem 37:3090–3092

    Article  CAS  Google Scholar 

  18. Hammett LP (1970) Physical organic chemistry: Reaction rates, equilibria and mechanism. McGraw-Hill, New York

    Google Scholar 

  19. Kubinyi H (1993) QSAR: Hansch analysis and related approaches. In: Mannhold R, Krogsgaard L, Timmerman H (eds) Methods and principles in medicinal chemistry, vol 1. VCH Publishers, New York

    Google Scholar 

  20. Free SM, Wilson JW (1964) A mathematical contribution to structure–activity studies. J Med Chem 7:395–399

    Article  CAS  Google Scholar 

  21. Sciabola S, Stanton RV, Wittkopp S et al. (2008) Predicting kinase selectivity profiles using Free-Wilson QSAR analysis. J Chem Inf Model 48:1851–1867

    Article  CAS  Google Scholar 

  22. Fujita T, Ban T (1971) Structure-activity relation. 3. Structure–activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. J Med Chem 14:148–152

    Article  CAS  Google Scholar 

  23. Taft RW, Abboud J-LM, Kamlet MJ et al. (1985) Linear solvation energy relations. J Sol Chem 14:153–186

    Article  CAS  Google Scholar 

  24. Kamlet MJ, Abboud JLM, Abraham MH et al. (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  25. Kamlet MJ, Doherty RM, Abboud JLM et al. (1986) Linear solvation energy relationships: 36. Molecular properties governing solubilities of organic nonelectrolytes in water. J Pharm Sci 75:338–349

    Article  CAS  Google Scholar 

  26. Murray JS, Politzer P, Famini GR (1998) Theoretical alternatives to linear solvation energy relationships. J Mol Struct: THEOCHEM 454:299–306

    Article  CAS  Google Scholar 

  27. Famini GR, Penski CA, Wilson LY (1992) Using theoretical descriptors in quantitative structure activity relationships: Some physicochemical properties. J Phys Org Chem 5:395–408

    Article  CAS  Google Scholar 

  28. Kamlet MJ, Doherty RM, Fiserova-Bergerova V et al. (1987) Solubility properties in biological media 9: Prediction of solubility and partition of organic nonelectrolytes in blood and tissues from solvatochromic parameters. J Pharm Sci 76:14–17

    Article  CAS  Google Scholar 

  29. Abraham MH, Martins F (2004) Human skin permeation and partition: General linear free-energy relationship analyses. J Pharm Sci 93:1508–1523

    Article  CAS  Google Scholar 

  30. Platts JA, Abraham MH, Zhao YH et al. (2001) Correlation and prediction of a large blood–brain distribution data set – an LFER study. Eur J Med Chem 36:719–730

    Article  CAS  Google Scholar 

  31. Sangster J (1997) Octanol-water partition coefficients: Fundamentals and physical chemistry. Chichester, England.

    Google Scholar 

  32. Mannhold R, Poda GI, Ostermann C et al. (2009) Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 98:861–893

    Article  CAS  Google Scholar 

  33. Lee CK, Uchida T, Kitagawa K et al. (1994) Skin permeability of various drugs with different lipophilicity. J Pharm Sci 83:562–565

    Article  CAS  Google Scholar 

  34. Baláž Š(2000) Lipophilicity in trans-bilayer transport and subcellular pharmacokinetics. Persp Drug Disc Des 19:157–177

    Article  Google Scholar 

  35. Testa B, Crivori P, Reist M et al. (2000) The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Persp Drug Disc Des 19:179–211

    Article  CAS  Google Scholar 

  36. Efremov RG, Chugunov AO, Pyrkov TV et al. (2007) Molecular lipophilicity in protein modeling and drug design. Curr Med Chem 14:393–415

    Article  CAS  Google Scholar 

  37. Testa B, Caron G, Crivori P et al. (2000) Lipophilicity and related molecular properties as determinants of pharmacokinetic behaviour. Chimia 54:672–677

    CAS  Google Scholar 

  38. Stella C, Galland A, Liu X et al. (2005) Novel RPLC stationary phases for lipophilicity measurement: solvatochromic analysis of retention mechanisms for neutral and basic compounds. J Sep Sci 28:2350–2362

    Article  CAS  Google Scholar 

  39. Lombardo F, Shalaeva MY, Tupper KA et al. (2000) ElogPoct: A tool for lipophilicity determination in drug discovery. J Med Chem 43:2922–2928

    Article  CAS  Google Scholar 

  40. George A (1999) The design and molecular modeling of CNS drugs. Curr Opin Drug Disc Dev 2:286–292

    CAS  Google Scholar 

  41. Youdim MBH, Buccafusco JJ (2005) CNS Targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 112:519–537

    Article  CAS  Google Scholar 

  42. Van der Schyf CJ, Geldenhuys J, Youdim MBH (2006) Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 99:1033–1048

    Article  CAS  Google Scholar 

  43. Quach TT, Duchemin AM, Rose C et al. (1979) In vivo occupation of cerebral histamine H1-receptors evaluated with 3H-mepyramine may predict sedative properties of psychotropic drugs. Eur J Pharmacol 60:391–392

    Article  CAS  Google Scholar 

  44. Bousquet J, Campbell AM, Canonica GW (1996) H1-receptors antagonists: Structure and classification. In: Simons FER, Dekkers M (eds) Histamine and H1-receptor antagonists in allergic diseases. Marcel Dekker, New York

    Google Scholar 

  45. Abraham MH (2004) The factors that influence permeation across the blood–brain barrier. Eur J Med Chem 39:235–240

    Article  CAS  Google Scholar 

  46. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  CAS  Google Scholar 

  47. Randic M (1975) Characterization of molecular branching. J Am Chem Soc 97:6609–6615

    Article  CAS  Google Scholar 

  48. Balaban AT (1998) Topological and stereochemical molecular descriptors for databases useful in QSAR, similarity/dissimilarity and drug design. SAR QSAR Environ Res 8:1–21

    Article  CAS  Google Scholar 

  49. Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comp Sci 35:1039–1045

    CAS  Google Scholar 

  50. Mezey PG (1992) Shape-similarity measures for molecular bodies: A 3D topological approach to quantitative shape-activity relations. J Chem Inf Comp Sci 32:650–656

    CAS  Google Scholar 

  51. Camenisch G, Folkers G, van de Waterbeemd H (1998) Shapes of membrane permeability-lipophilicity curves: Extension of theoretical models with an aqueous pore pathway. Eur J Pharm Sci 6:321–329

    Article  CAS  Google Scholar 

  52. Hopfinger AJ (1980) A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J Am Chem Soc 102:7196–7206

    Article  CAS  Google Scholar 

  53. Seri-Levy A, Salter R, West S et al. (1994) Shape similarity as a single independent variable in QSAR. Eur J Med Chem 29:687–694

    Article  CAS  Google Scholar 

  54. Bondi A (1964) van der Waals Volumes and Radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  55. Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107:1118–1124

    Article  CAS  Google Scholar 

  56. Arteca GA (1996) Molecular shape descriptors. In: Boyd DB, Lipkowitz KB (eds) Reviews in computational chemistry, vol 9. Wiley-VCH, New York

    Google Scholar 

  57. Verloop A (1987) The STERIMOL approach to drug design. Marcel Dekker, New York

    Google Scholar 

  58. Cruciani G, Pastor M, Guba W (2000) VolSurf: A new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 11:S29–S39

    Article  CAS  Google Scholar 

  59. Andrews CW, Bennett L, Yu L (2000) Predicting human oral bioavailability of a compound: development of a novel quantitative structure–bioavailability relationship. Pharm Res 17:639–644

    Article  CAS  Google Scholar 

  60. Veber DF, Johnson SR, Cheng H-Y et al. (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  61. Rekker RF, Mannhold R (1992) Calculation of drug lipophilicity. VCH, Weinheim.

    Google Scholar 

  62. Hansch C, Leo A, Nikaitani D (1972) Additive-constitutive character of partition coefficients. The Journal of Organic Chemistry 37:3090–3092

    Article  CAS  Google Scholar 

  63. Austin RP, Davis AM, Manners CN (1995) Partitioning of ionizing molecules between aqueous buffers and phospholipid vesicles. J Pharm Sci 84:1180–1183

    Article  CAS  Google Scholar 

  64. Scherrer RA, Howard SM (1977) Use of distribution coefficients in quantitative structure–activity relations. J Med Chem 20:53–58

    Article  CAS  Google Scholar 

  65. Carrupt P-A, Testa B, Gaillard P (1997) Computational approaches to lipophilicity: Methods and applications. In: Boyd DB, Lipkowitz KB (eds) Reviews in computational chemistry, vol 11. Wiley-VCH, New York

    Google Scholar 

  66. Cramer RD, Wendt B (2007) Pushing the boundaries of 3D-QSAR. J Comp-Aided Mol Des 21:23–32

    Article  CAS  Google Scholar 

  67. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  CAS  Google Scholar 

  68. Cocchi M, Johansson E (1993) Amino acids characterization by GRID and multivariate data analysis. Quant Struct-Act Relat 12:1–8

    Article  CAS  Google Scholar 

  69. Davis AM, Gensmantel NP, Johansson E et al. (1994) The use of the GRID program in the 3-D QSAR analysis of a series of calcium-channel agonists. J Med Chem 37:963–972

    Article  CAS  Google Scholar 

  70. Pastor M, Cruciani G (1995) A novel strategy for improving ligand selectivity in receptor-based drug design. J Med Chem 38:4637–4647

    Article  CAS  Google Scholar 

  71. Mannhold R, Berellini G, Carosati E et al. (2006) Use of MIF-based VolSurf descriptors in physicochemical and pharmacokinetic studies. In: Cruciani G, Mannhold R, Kubinyi H et al. (eds) Molecular interaction fields: Applications in drug discovery and ADME prediction. Wiley, Weinheim

    Google Scholar 

  72. Cianchetta G, Mannhold R, Cruciani G et al. (2004) Chemometric studies on the bactericidal activity of quinolones via an extended VolSurf approach. J Med Chem 47:3193–3201

    Article  CAS  Google Scholar 

  73. Bajot F (2006) 3D solvatochromic models to derive pharmacokinetic in silico profiles of new chemical entities. Ph.D. Thesis, University of Geneva

    Google Scholar 

  74. Gaillard P, Carrupt P-A, Testa B et al. (1994) Molecular lipophilicity potential, a tool in 3D-QSAR. Method and applications. J Comp-Aided Mol Des 8:83–96

    Article  CAS  Google Scholar 

  75. Rey S, Caron G, Ermondi G et al. (2001) Development of molecular hydrogen-bonding potentials (MHBPs) and their application to structure-permeation relations. J Mol Graphics Model 19:521–535

    Article  CAS  Google Scholar 

  76. Weaver S, Gleeson MP (2008) The importance of the domain of applicability in QSAR modeling. J Mol Graphics Model 26:1315–1326

    Article  CAS  Google Scholar 

  77. Netzeva TI, Worth AP, Aldenberg T et al. (2005) Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. ATLA 33: 155–173

    CAS  Google Scholar 

  78. Schultz TW, Hewitt M, Netzeva TI et al. (2007) Assessing applicability domains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci 26:238–254

    Article  CAS  Google Scholar 

  79. Hoffmann P, Warner B (2006) Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J Pharmacol Toxicol Meth 53:87–105

    Article  CAS  Google Scholar 

  80. Rangno R (1997) Terfenadine therapy: can we justify the risk? Can Med Assoc J 157:37–38

    CAS  Google Scholar 

  81. Jamieson C, Moir EM, Rankovic Z et al. (2006) Medicinal chemistry of hERG optimizations: Highlights and hang-ups. J Med Chem 49:5029–5046

    Article  CAS  Google Scholar 

  82. Ekins S, Crumb WJ, Sarazan RD et al. (2002) Three-dimensional quantitative structure–activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J Pharmacol Exp Ther 301:427–434

    Article  CAS  Google Scholar 

  83. Aptula AO, Cronin MTD (2004) Prediction of hERG K+ blocking potency: Application of structural knowledge. SAR QSAR Environ Res 15:399–411

    Article  CAS  Google Scholar 

  84. Bradbury MWB (1984) The structure and function of the blood–brain barrier. Fed Proc 43: 186–190

    CAS  Google Scholar 

  85. Bodor N, Brewster ME (1983) Problems of delivery of drugs to the brain. Pharmacol Ther 19: 337–386

    Article  CAS  Google Scholar 

  86. Rose K, Hall LH, Kier LB (2002) Modeling blood–brain barrier partitioning using the electrotopological state. J Chem Inf Comp Sci 42:651–666

    CAS  Google Scholar 

  87. Crivori P, Cruciani G, Carrupt PA et al. (2000) Predicting blood–brain barrier permeation from three-dimensional molecular structure. J Med Chem 43:2204–2216

    Article  CAS  Google Scholar 

  88. Ooms F, Weber P, Carrupt P-A et al. (2002) A simple model to predict blood–brain barrier permeation from 3D molecular fields. Biochimi Biophys Acta – Mol Basis Disease 1587:118–125

    CAS  Google Scholar 

  89. Gerebtzoff G, Seelig A (2006) In silico prediction of blood–brain barrier permeation using the calculated molecular cross-sectional area as main parameter. J Chem Inf Model 46:2638–2650

    Article  CAS  Google Scholar 

  90. Young RC, Mitchell RC, Brown TH et al. (1988) Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem 31:656–671

    Article  CAS  Google Scholar 

  91. Clark DE (2003) In silico prediction of blood–brain barrier permeation. Drug Disc Today 8: 927–933

    Article  CAS  Google Scholar 

  92. Reddy RN, Mutyala R, Aparoy P et al. (2007) Computer aided drug design approaches to develop cyclooxygenase based novel anti-inflammatory and anti-cancer drugs. Curr Pharm Des 13: 3505–3517

    Article  CAS  Google Scholar 

  93. Fujimura T, Ohta T, Oyama K et al. (2007) Cyclooxygenase-2 (COX-2) in carcinogenesis and selective COX-2 inhibitors for chemoprevention in gastrointestinal cancers. J Gastrointest Canc 38:78–82

    Article  CAS  Google Scholar 

  94. Esposito E, Di Matteo V, Benigno A et al. (2007) Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exper Neurol 205:295–312

    Article  CAS  Google Scholar 

  95. Hoozemans JJ, Rozemuller JM, van Haastert ES et al. (2008) Cyclooxygenase-1 and -2 in the different stages of Alzheimer’s disease pathology. Curr Pharm Des 14:1419–1427

    Article  CAS  Google Scholar 

  96. Kurumbail RG, Stevens AM, Gierse JK et al. (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644

    Article  CAS  Google Scholar 

  97. Picot D, Loll PJ, Garavito RM (1994) The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367:243–249

    Article  CAS  Google Scholar 

  98. Marshall GR, Taylor CM (2007) Introduction to computer-assisted drug design – Overview and perspective for the future. In: John BT, David JT (eds) Comprehensive medicinal chemistry II, vol 4. Elsevier, Oxford

    Google Scholar 

  99. Good A, John BT, David JT (2007) Virtual screening. In: John BT, David JT (eds) Comprehensive medicinal chemistry II, vol 4. Elsevier, Oxford

    Google Scholar 

  100. Garg R, Kurup A, Mekapati SB et al. (2003) Cyclooxygenase (COX) inhibitors: A comparative QSAR study. Chem Rev 103:703–732

    Article  CAS  Google Scholar 

  101. Lee K-O, Park H-J, Kim Y-H et al. (2004) CoMFA and CoMSIA 3D QSAR studies on pimarane cyclooxygenase-2 (COX-2) inhibitors. Arch Pharm Res 27:467–470

    Article  CAS  Google Scholar 

  102. Selinsky BS, Gupta K, Sharkey CT et al. (2001) Structural analysis of NSAID binding by prostaglandin H2 synthase: Time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochem 40:5172–5180

    Article  CAS  Google Scholar 

  103. Gepp MM, Hutter MC (2006) Determination of hERG channel blockers using a decision tree. Bioorg Med Chem 14:5325–5332

    Article  CAS  Google Scholar 

  104. Thai K-M, Ecker GF (2008) A binary QSAR model for classification of hERG potassium channel blockers. Bioorg Med Chem 16:4107–4119

    Article  CAS  Google Scholar 

  105. Cianchetta G, Li Y, Kang J et al. (2005) Predictive models for hERG potassium channel blockers. Bioorg Med Chem Lett 15:3637–3642

    Article  CAS  Google Scholar 

  106. Song M, Clark M (2006) Development and evaluation of an in silico model for hERG binding. J Chem Inf Model 46:392–400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fania Bajot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bajot, F. (2010). The Use of Qsar and Computational Methods in Drug Design. In: Puzyn, T., Leszczynski, J., Cronin, M. (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9783-6_9

Download citation

Publish with us

Policies and ethics