Skip to main content

In Silico Approaches for Predicting Adme Properties

  • Chapter
  • First Online:
Recent Advances in QSAR Studies

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 8))

Abstract

A drug requires a suitable pharmacokinetic profile to be efficacious in vivo in humans. The relevant pharmacokinetic properties include the absorption, distribution, metabolism, and excretion (ADME) profile of the drug. This chapter provides an overview of the definition and meaning of key ADME properties, recent models developed to predict these properties, and a guide as to how to select the most appropriate model(s) for a given query. Many tools using the state-of-the-art in silico methodology are now available to users, and it is anticipated that the continual evolution of these tools will provide greater ability to predict ADME properties in the future. However, caution must be exercised in applying these tools as data are generally available only for “successful” drugs, i.e., those that reach the marketplace, and little supplementary information, such as that for drugs that have a poor pharmacokinetic profile, is available. The possibilities of using these methods and possible integration into toxicity prediction are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Kerns EH, Di L (2008) Drug-like properties: Concepts, structure design and methods. Elsevier, Burlington, USA

    Google Scholar 

  2. d’Yvoire MB, Prieto P, Blaauboer BJ et al. (2007) Physiologically-based kinetic modelling (PBK modelling): Meeting the 3Rs agenda. The report and recommendations of ECVAM workshop 63. ATLA 35:661–671

    Google Scholar 

  3. Szakacs G, Varadi A, Ozvegy-Laczka C, Sarkadi B (2008) The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). DDT 13:379–393

    CAS  Google Scholar 

  4. Wilkinson GG (2001) Pharmacokinetics: The dynamics of drug absorption, distribution and elimination. In: Hardman J, Limbird E (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, McGraw-Hill, New York, pp 3–29

    Google Scholar 

  5. Gibbs S, van de Sandt JJM, Merk HF et al. (2007) Xenobiotic metabolism in human skin and 3-D human constructs: A review. Curr Drug Metab 8:758–772

    Article  CAS  Google Scholar 

  6. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  7. Lobell M, Hendrix M, Hinzen B, Keldenrich J (2006) In Silico ADMET traffic lights as a tool for the prioritization of HTS hits. Chem Med Chem 1:1229–1236

    CAS  Google Scholar 

  8. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834

    Article  CAS  Google Scholar 

  9. Hou T, Wang J, Zhang W et al. (2006) Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem 13:2653–2667

    Article  CAS  Google Scholar 

  10. Lian G, Chen L, Han L (2008) An evaluation of mathematical models for predicting skin permeability. J Pharm Sci 97:584–598

    Article  CAS  Google Scholar 

  11. Basak SC, Mills D Mumtaz MM (2007) A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. SAR QSAR Env Res 18:45–55

    Article  CAS  Google Scholar 

  12. Veber DF, Johnson SR, Cheng H-Y et al. (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  13. Moda TL, Monanari CA, Andricopulo AD (2007) Hologram QSAR model for the prediction of human oral bioavailability. Bioorg Med Chem 15:7738–7745

    Article  CAS  Google Scholar 

  14. Colmenarejo G (2003) In silico prediction of drug-binding strengths to human serum albumin. Med Res Rev 23:275–301

    Article  CAS  Google Scholar 

  15. Votano JR, Parham M, Hall ML et al. (2006) QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. J Med Chem 49:7169–7181

    Article  CAS  Google Scholar 

  16. Ghafourian T, Barzegar-Jalali M, Hakimiha N et al. (2004) Quantitative structure-pharmacokinetic relationship modelling: apparent volume of distribution. J Pharm Pharmacol 56:339–350

    Article  CAS  Google Scholar 

  17. Lombardo F, Obach RS, Shalaeva MY, Gao F (2004) Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem 47:1242–1250

    Article  CAS  Google Scholar 

  18. Gleeson MP, Waters NJ, Paine SW et al. (2006) In silico human and rat Vss quantitative structure-activity relationship models. J Med Chem 49:1953–1963

    Article  CAS  Google Scholar 

  19. Sui XF, Sun J, Wu X et al. (2008) Predicting the volume of distribution of drugs in humans. Curr Drug Metab 9:574–580

    Article  CAS  Google Scholar 

  20. Zhang H (2005) A new approach for the tissue-blood partition coefficients of neutral and ionized compounds. J Chem Inf Model 45:121–127

    Article  CAS  Google Scholar 

  21. Abraham MH, Ibrahim A, Acree WE Jr (2006) Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: linear free energy analyses. Eur J Med Chem 41:494–502

    Article  CAS  Google Scholar 

  22. Basak SC, Mills D, Gute BD (2006) Prediction of tissue–air partition coefficients – theoretical vs experimental methods. QSAR SAR Env Res 17:515–532

    Article  CAS  Google Scholar 

  23. Norinder U, Haberlein M (2002) Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev 54:291–313

    Article  CAS  Google Scholar 

  24. Konovalov DA, Coomans D, Deconinck E, Heyden YV (2007) Benchmarking of QSAR models for blood-brain barrier permeation. J Chem Inf Model 47:1648–1656

    Article  CAS  Google Scholar 

  25. Li H, Yap CW, Ung CY et al. (2005) Effect of selection of molecular descriptors on the prediction of blood brain barrier penetrating and nonpenetrating agents by statistical learning methods. J Chem Inf Model 45:1376–1384

    Article  CAS  Google Scholar 

  26. Zhao YH, Abraham MH, Ibrahim A et al. (2007) Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes. J Chem Inf Model 47:170–175

    Article  CAS  Google Scholar 

  27. Hewitt M, Madden JC, Rowe PH, Cronin MTD (2007) Structure-based modelling in reproductive toxicology: (Q)SARs for the placental barrier. SAR QSAR Env Res 18:57–76

    Article  CAS  Google Scholar 

  28. Chang C, Ray A, Swaan P (2005) In Silico strategies for modeling membrane transporter function. DDT 10:663–671

    CAS  Google Scholar 

  29. Huang J, Ma G, Muhammad I, Cheng Y (2007) Identifying P-glycoprotein substrates using a support vector machine optimised by a particle swarm. J Chem Inf Mod 47:1638–1647

    Article  CAS  Google Scholar 

  30. Cabrera MA, Gonzalez I, Fernandez C et al. (2006) A topological substructural approach for the prediction of P-glycoprotein substrates. J Pharm Sci 95:589–606

    Article  CAS  Google Scholar 

  31. Manga N, Duffy JC, Rowe PH, Cronin MTD (2003) A hierarchical QSAR model for urinary excretion of drugs in humans as a predictive tool for biotransformation. QSAR Comb Sci 22:263–273

    Article  CAS  Google Scholar 

  32. Agatonovic-Kustrin S, Ling LH, Tham SY, Alany RG (2002) Molecular descriptors that influence the amount of drugs transfer into human breast milk. J Pharm Biomed Anal 29:103–119

    Article  CAS  Google Scholar 

  33. Afzelius L, Arnby CH, Broo A et al. (2007) State-of-the-art tools for computational site of metabolism predictions: comparative analysis, mechanistical insights, and future applications. Drug Metab Rev 39:61–86

    Article  CAS  Google Scholar 

  34. Madden JC, Cronin MTD (2006) Structure-based methods for the prediction of drug metabolism. Expert Opin Drug Metab Toxicol 2:545–557

    Article  CAS  Google Scholar 

  35. Payne M (2004) Computer-based methods for the prediction of chemical metabolism and biotransformation within biological organisms. In: Cronin MTD, Livingstone DJ (eds) Predicting chemical toxicity and fate. CRC Press, Boca Raton

    Google Scholar 

  36. Manga N, Duffy JC, Rowe PH, Cronin MTD (2005) Structure-based methods for the prediction of the dominant P450 enzyme in human drug biotransformation: Consideration of CYP3A4, CYP2C9, CYP2D6. SAR QSAR Env Res 16:43–61

    Article  CAS  Google Scholar 

  37. Yap CW, Li ZR, Chen YZ (2006) Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J Mol Graph Mod 24:383–395

    Article  CAS  Google Scholar 

  38. Quinones C, Caceres J, Stud M, Martinez A (2000) Prediction of drug half-life values of anti-histamines based on the CODES/neural network model. Quant Struct Act Relat 19:448–454

    Article  CAS  Google Scholar 

  39. Quinones-Torrelo C, Sagrado S, Villaneuva-Camanas RM, Medina-Hernandez MJ (2001) Retention pharmacokinetic and pharmacodynamic parameter relationships of antihistmaine drugs using biopartitioning micellar chromatography. J Chromatogr B 761:13–26

    Article  CAS  Google Scholar 

  40. Netzeva TI, Worth AP, Aldenberg T et al. (2005) Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. The report and recommendations of ECVAM Workshop 52. ATLA 33:155–173

    CAS  Google Scholar 

  41. Hou T, Wang J, Zhang W, Xu X (2007) ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model 47:208–218

    Article  CAS  Google Scholar 

  42. Hou T, Wang J, Zhang W, Xu X (2007) ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules. J Chem Inf Model 47:460–463

    Article  CAS  Google Scholar 

  43. Abraham MH, Ibrahim A, Zhao Y, Acree WE Jr (2006) A database for partition of volatile organic compounds and drugs from blood/plasma/serum to brain and an LFER analysis of the data. J Pharm Sci 95:2091–2100

    Article  CAS  Google Scholar 

  44. Kalgutkar AS, Gardner I, Obach S et al. (2005) A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6:161–225

    Article  CAS  Google Scholar 

  45. Turner JV, Maddalena DJ, Cutler DJ (2004) Pharmacokinetic parameter prediction from drug structure using artificial neural networks. Int J Pharmac 270:209–219

    Article  CAS  Google Scholar 

  46. Takano M, Yumoto R, Murakami T (2006) Expression and function of efflux transporters in the intestine. Pharmacol Ther 109:137–161

    Article  CAS  Google Scholar 

  47. Thummel KE, Shen GG (2001) Design and optimization of dosage regimens: Pharmacokinetic data. In: Hardman J, Limbird E (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 1917–2023

    Google Scholar 

  48. Schultz M, Schmoldt A (1997) Therapeutic and toxic blood concentrations of more than 500 drugs. Pharmazie 52(12):895–911

    Google Scholar 

  49. Hollósy F, Valkó K, Hersey A et al. (2006) Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilised artificial membrane partitioning. J Med Chem 49:6958–6971

    Article  Google Scholar 

  50. Ekins S (2006) Systems-ADME/Tox: Resources and network approaches. J Pharmacol Toxicol Meth 53:38–66

    Article  CAS  Google Scholar 

  51. de Groot M (2006) Designing better drugs: Predicting cytochrome P450 metabolism. Drug Disc Today 11:601–606

    Article  Google Scholar 

  52. Banik GM (2004) In silico ADME-Tox prediction: the more the merrier. Curr Drug Disc 4:31–34

    Google Scholar 

  53. Ekins S, Waller CL, Swann PW (2000) Progress in predicting human ADME parameters in silico. J Pharmacol Toxicol Meth 44:251–272

    Article  CAS  Google Scholar 

  54. Duffy JC (2004) Prediction of pharmacokinetic parameters in drug design and toxicology. In: Cronin MTD, Livingstone DJ (eds) Predicting chemical toxicity and fate. CRC Press, Boca Raton

    Google Scholar 

  55. Gola J, Obrezanova O, Champness E, Segall M (2006) ADMET property prediction: The state of the art and current challenges. QSAR Comb Sci 25:1172–1180

    Article  CAS  Google Scholar 

  56. Chohan KK, Paine SW, Water, NJ (2006) Quantitative structure activity relationships in drug metabolism. Curr Top Med Chem 6:1569–1578

    Article  CAS  Google Scholar 

  57. Winkler DA (2004) Neural networks in ADME and toxicity prediction. Drugs Fut 29:1043–1057

    Article  CAS  Google Scholar 

  58. Dearden JC (2007) In silico prediction of ADMET properties: How far have we come? Expert Opin Drug Metab Toxicol 3:635–639

    Article  CAS  Google Scholar 

  59. Enoch SJ, Cronin MTD, Schultz TW, Madden JC (2008) An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 71:1225–1232

    Article  CAS  Google Scholar 

  60. Rodgers SL, Davis AM, van de Waterbeemd H (2007) Time-series QSAR analysis of human plasma protein binding data. QSAR Comb Sci 26:511–521

    Article  CAS  Google Scholar 

  61. Ekins S, Andreyev S, Ryabov A et al. (2005) Computational prediction of human drug metabolism. Expert Opin Drug Metab Toxicol 1:303–324

    Article  CAS  Google Scholar 

  62. Stouch TR, Kenyon JR, Johnson SR et al. (2003) In Silico ADME/Tox: Why models fail. J Comput-Aid Mol Des 17:83–92

    Article  CAS  Google Scholar 

  63. Jamei M, Marciniak S, Feng K (2009) The Simcyp® population based ADME simulator. Expert Opin Drug Metab Toxicol 5:211–223

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The funding of the European Union 6th Framework CAESAR Specific Targeted Project (SSPI-022674-CAESAR) and OSIRIS Integrated Project (GOCE-037017-OSIRIS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith C. Madden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Madden, J.C. (2010). In Silico Approaches for Predicting Adme Properties. In: Puzyn, T., Leszczynski, J., Cronin, M. (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9783-6_10

Download citation

Publish with us

Policies and ethics