Skip to main content

Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review

  • Chapter
  • First Online:
Jellyfish Blooms: Causes, Consequences, and Recent Advances

Part of the book series: Developments in Hydrobiology ((DIHY,volume 206))

Abstract

Studies of the trophic ecology of gelatinous zooplankton have predominantly employed gut content analyses and grazing experiments. These approaches record only what is consumed rather than what is assimilated by the jellyfish, only provide evidence of recent feeding, and unless digestion rates of different prey are known, may provide biased estimates of the relative importance of different prey to jellyfish diets. Biochemical tracers, such as stable isotopes and fatty acids, offer several advantages because they differentiate between what is assimilated and what is simply ingested, they provide an analysis of diet that is integrated over time, and may be useful for identifying contributions from sources (e.g., bacteria) that cannot be achieved using gut content approaches. Stable isotope analysis has become more rigorous through recent advances that provide: (1) signature determination of microscopic organisms such as microalgae, (2) analysis of dissolved organic carbon, and (3) improved quantification of relative source contributions. The limitation that natural tracer techniques require different dietary sources to have unique signatures can potentially be overcome using pulse-chase isotope enrichment experiments. Trophic studies of gelatinous zooplankton would benefit by integrating several approaches. For example, gut content analyses may be used to identify potential dietary sources. Stable isotopes could then be used to determine which sources are assimilated and modeling could be used to quantify the contribution of different sources to the diet. Analysis of fatty acid profiles could be used to identify contributions of bacterioplankton to the diet and, potentially, to provide an alternative means of identifying dietary sources in situations where the isotopic signatures of different potential dietary sources overlap. In this review, we outline the application, advantages, and limitations of gut content analyses and stable isotope and fatty acid tracer techniques and discuss the benefits of using an integrated approach toward studies of the trophic ecology of gelatinous zooplankton.

Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Båmstedt, U. & M. B. Martinussen, 2000. Estimating digestion rate and the problem of individual variability, exemplified by a scyphozoan jellyfish. Journal of Experimental Marine Biology and Ecology 251: 1–15.

    Article  PubMed  Google Scholar 

  • Benstead, J. P., J. B. March, B. Fry, K. C. Ewel & C. M. Pringle, 2006. Testing isosource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology 87: 326–333.

    Article  PubMed  Google Scholar 

  • Bodin, N., F. Le Loc’h & C. Hily, 2007. Effect of lipid renoval on carbon and nitrogen stable isotope ratios in crustacean tissues. Journal of Experimental Marine Biology and Ecology 341: 168–175.

    Article  CAS  Google Scholar 

  • Bosley, K. L. & S. C. Wainright, 1999. Effects of preservatives and acidification on the stable isotope ratios (15N:14N, 13C: 12C) of two species of marine animals. Canadian Journal of Fisheries and Aquatic Sciences 56: 2181–2185.

    Article  Google Scholar 

  • Bouillon, S., M. Korntheuer, W. Baeyens & F. Dehairs, 2006. A new automated setup for stable isotope analysis of dissolved organic carbon. Limnology and Oceanography Methods 4: 216–226.

    CAS  Google Scholar 

  • Brodeur, R. D., H. Sugisaki & G. L. Hunt Jr., 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.

    Article  Google Scholar 

  • Browne, J. G. & M. J. Kingsford, 2005. A commensal relationship between the scyphozoan medusae Catostylus mosaicus and the copepod Paramachronchiron maximum. Marine Biology 146: 1157–1168.

    Article  Google Scholar 

  • Budge, S. M. & C. C. Parrish, 1998. Lipid biogeochemistry of plankton, settling matter 1 and sediments 2 in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochemistry 29: 1547–1559.

    Article  CAS  Google Scholar 

  • Bunn, S. E., N. R. Loneragan & M. A. Kempster, 1995. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food web studies using multiple stable isotopes. Limnology and Oceanography 40: 622–625.

    CAS  Google Scholar 

  • Burkhardt, S., U. Riebesell & I. Zondervan, 1999. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica et Cosmochimica Acta 63: 3729–3741.

    Article  CAS  Google Scholar 

  • Carli, A., L. Pane & T. Valente, 1991. Lipid and protein content of jellyfish from the Ligurian Sea. First results. In UNEP (United Nations Action Plan), Jellyfish Blooms in the Mediterranean. Proceedings of the II Workshop on Jellyfish in the Mediterranean Sea. Mediterranean Action Plan Technical Reports Series No. 47, UNEP, Athens: 236–240.

    Google Scholar 

  • Connolly, R. M., M. Guest, A. J. Melville & J. Oakes, 2004. Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138: 161–167.

    Article  PubMed  Google Scholar 

  • Copeman, L. A. & C. C. Parrish, 2003. Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador. Marine Biology 143: 1213–1227.

    Article  CAS  Google Scholar 

  • Costanzo, S. D., J. Udy, B. Longstsaff & A. Jones, 2005. Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Marine Pollution Bulletin 51: 212–217.

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard, J., M. St. John, G. Kattner, D. Muller-Navarra & W. Hagen, 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46: 225–340.

    Article  PubMed  Google Scholar 

  • De Niro, M. J. & S. Epstein, 1977. Mechanism of isotope carbon fractionation associated with lipid síntesis. Science 197: 261–263.

    Article  Google Scholar 

  • De Souza, L. M., M. Iacomini, P. A. J. Gorin, R. S. Sari, M. A. Haddad & G. L. Sassaki, 2007. Glyco-and sphingo-phosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chemistry and Physics of Lipids 145: 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P. G., 1991. Species variability in the fractionation of 13C and 12 by marine phytoplankton. Journal of Plankton Research 13(supplement): 21–28.

    Google Scholar 

  • Falk-Petersen, S., T. M. Dahl, C. L. Scott, J. R. Sargent, B. Gulliksen, S. Kwasniewski, H. Hop & R.-M. Millar, 2002. Lipid biomarkers and trophic linkages between cteno-phores and copepods in Svalbard waters. Marine Ecology Progress Series 227: 187–194.

    Article  CAS  Google Scholar 

  • Fancett, M. S. & G. P. Jenkins, 1988. Predatory impact of scyphomedusae on ichthyoplankton and other zooplank-ton in Port Phillip Bay. Journal of Experimental Marine Biology and Ecology 116: 63–77.

    Article  Google Scholar 

  • Flynn, B. A. & M. J. Gibbons, 2007. A note on the diet and feeding of Chrysaora hyoscella in Walvis Bay Lagoon, Namibia, in September 2003. African Journal of Marine Science 29: 303–307.

    Article  Google Scholar 

  • Frazer, T. K., R. M. Ross, L. B. Quetin & J. P. Montoya, 1997. Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba Dana: a stable isotope approach. Journal of Experimental Marine Biology and Ecology 212: 259–275.

    Article  Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecology. Springer Verlag, New York, USA.

    Google Scholar 

  • Fry, B. & C. Arnold, 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54: 200–204.

    Article  Google Scholar 

  • Fukuda, Y. & T. Naganuma, 2001. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Marine Biology 138: 1029–1035.

    Article  CAS  Google Scholar 

  • Gee, J. M., 1989. An ecological and economic review of meiofauna as food for fish. Journal of the Linnean Society 96: 253–261.

    Article  Google Scholar 

  • Gorokhova, E. & S. Hansson, 1999. An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Canadian Journal of Fisheries and Aquatic Sciences 56: 2203–2210.

    Article  Google Scholar 

  • Graeve, M., G. Kattner, C. Wiencke & U. Kartsen, 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationship. Marine Ecology Progress Series 231: 67–74.

    Article  CAS  Google Scholar 

  • Graeve, M., M. Lundberg, M. Böer, G. Kattner, H. Hop & S. Falk-Petersen, 2008. The fate of dietary lipids in the Arctic ctenophore Mertensia ovum (Fabricius 1780). Marine Biology 153: 643–651.

    Article  CAS  Google Scholar 

  • Gribsholt, B., H. T. S. Boschker, E. Struyf, M. Andersson, A. Tramper, L. De Brabandere, S. van Damme, N. Brion, P. Meire, F. Dehairs, J. J. Middelburg & C. H. R. Heip, 2005. Nitrogen processing in a tidal freshwater marsh: a whole-ecosystem N-15 labelling study. Limnology and Oceanography 50: 1945–1959.

    CAS  Google Scholar 

  • Hall, D., S. Y. Lee & T. Meziane, 2006. Fatty acids as trophic tracers in an experimental estuarine food chain: tracer transfer. Journal of Experimental Marine Biology and Ecology 336: 42–53.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., S. J. Sippel & S. E. Bunn, 2005. Separation of algae from detritus for stable isotope or ecological stoi-chiometry studies using density fractionation in colloidal silica. Limnology and Oceanography Methods: 3:149–157.

    CAS  Google Scholar 

  • Hansson, L. J., O. Moeslund, T. Kiørboe & H. U. Riisgård, 2005. Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Marine Ecology Progress Series 304: 117–131.

    Article  Google Scholar 

  • Harland, A. D., D. P. Spencer & L. M. Fixter, 1992. Lipid content of some Caribbean corals in relation to depth and light. Marine Biology 113: 357–361.

    Article  CAS  Google Scholar 

  • Heaton, T. H. E., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chemical Geology (Isotope Geoscience Section) 59: 87–102.

    Article  CAS  Google Scholar 

  • Heeger, T. & H. Möller, 1987. Ultrastructural observations on prey capture and digestion in the scyphomedusa Aurelia aurita. Marine Biology 96: 391–400.

    Article  Google Scholar 

  • Hesslein, R. H., K. A. Hallard & P. Ramlal, 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34C, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences 50: 2071–2076.

    Article  CAS  Google Scholar 

  • Howell, K. L., D. W. Pond, D. S. M. Billett & P. A. Tyler, 2003. Feeding ecology of deep-sea seastars (Echinoder-mata: Asteroidea): a fatty-acid biomarker approach. Marine Ecology Progress Series 255: 193–206.

    Article  CAS  Google Scholar 

  • Ito, M. K. & K. L. Simpson, 1996. The biosynthesis of ω3 fatty acids from 18:2ω6 in Artemia spp. Comparative Biochemistry and Physiology 115B: 67–76.

    Google Scholar 

  • Ju, S.-J., K. Scolardi, K. L. Daly & H. R. Harvey, 2004. Understanding the trophic role of the Antarctic cteno-phore, Callianira antarctica, using lipid biomarkers. Polar Biology 27: 782–792.

    Article  Google Scholar 

  • Lorrain, A., Y.-M. Paulet, L. Chauvaud, N. Savoye, A. Donval & C. Saot, 2002. Differential δ13C and δ15N signatures among scallop tissues: implications for ecology and physiology. Journal of Experimental Marine Biology and Ecology 275: 47–61.

    Article  CAS  Google Scholar 

  • Lucas, C. H., 1994. Biochemical composition of Aurelia aurita in relation to age and sexual maturity. Journal of Experimental Marine Biology and Ecology 183: 179–192.

    Article  CAS  Google Scholar 

  • Lynam, C. P., M. J. Gibbons, E. A. Bjørn, C. A. J. Sparks, B. G. Heywood & A. S. Brierley, 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16: R492–R493.

    Article  PubMed  CAS  Google Scholar 

  • MacAvoy, S. E., S. A. Macko & G. C. Garman, 2001. Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Canadian Journal of Fisheries and Aquatic Sciences 58: 923–932.

    Article  CAS  Google Scholar 

  • Malej, A., J. Faganeli & J. Pezdic, 1993. Stable isotope and biochemical fractionation in the marine pelagic food-chain: the jellyfish Pelagia noctiluca and net zooplankton. Marine Biology 116: 565–570.

    Article  CAS  Google Scholar 

  • McCutchan, J. H. J. & W. M. J. Lewis, 2002. Relative importance of carbon sources for macroinvertebrates in a rocky mountain stream. Limnology and Oceanography 47: 742–752.

    Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Melville, A. J. & R. M. Connolly, 2003. Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136: 499–507.

    Article  PubMed  Google Scholar 

  • Melville, A. J. & R. M. Connolly, 2005. Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Marine Biology 148: 363–371.

    Article  Google Scholar 

  • Meziane, T., F. d’Agata & S. Y. Lee, 2006. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Marine Ecology Progress Series 312: 15–27.

    Article  CAS  Google Scholar 

  • Meziane, T., S. Y. Lee, P. L. Mfilinge, P. K. S. Shin, M. H. W. Lam & M. Tsuchiya, 2007. Inter-specific and geographical variations in the fatty acid composition of mangrove leaves: implications for using fatty acids as a taxonomic tool and tracers of organic matter. Marine Biology 150: 1103–1113.

    Article  CAS  Google Scholar 

  • Meziane, T., M. C. Sanabe & M. Tsuchiya, 2002. Role of fiddler crabs of a subtropical intertidal flat on the fate of sedimentary fatty acids. Journal of Experimental Marine Biology and Ecology 270: 191–201.

    Article  CAS  Google Scholar 

  • Michener, R. H. & D. M. Schell, 1994. Stable isotope ratios as tracers in marine aquatic food webs. In Lajtha, K. & R. H. Michener (eds), Stable Isotopes in Ecology and Environmental Science. Oxford Blackwell Scientific Publications, London: 138–157.

    Google Scholar 

  • Middelburg, J. J., C. Barranguet, H. T. S. Boschker, P. M. J. Herman, T. Moens & C. H. R. Heip, 2000. The fate of intertidal microphytobenthos carbon: an in situ del 13C-labeling study. Limnology and Oceanography 45: 1224–1234.

    CAS  Google Scholar 

  • Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmo-chimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Moens, T., L. Verbeeck, A. de Maeyer, J. Swings & M. Vincx, 1999. Selective attraction of marine bacterivorous nema-todes to their bacterial food. Marine Ecology Progress Series 176: 165–178.

    Article  Google Scholar 

  • Montoya, J. P., S. G. Horrigan & J. J. McCarthy, 1990. Natural abundance of N in particulate nitrogen and zooplankton in the Chesapeake Bay. Marine Ecology Progress Series 65: 35–61.

    Article  CAS  Google Scholar 

  • Mutchler, T., M. J. Sullivan & B. Fry, 2004. Potential of 14N isotope enrichment to resolve ambiguities in coastal trophic relationships. Marine Ecology Progress Series 266: 27–33.

    Article  Google Scholar 

  • Ng, J. S. S., T-C. Wai & G. A. Williams, 2007. The effects of acidification on the stable isotope signatures of marine algae and molluscs. Marine Chemistry 103: 97–102.

    Article  CAS  Google Scholar 

  • Nichols, P. D., K. T. Danaher & J. A. Koslow, 2003. Occurrence of high levels of tetracosahexaenoic acid in the jellyfish Aurelia sp. Lipids 38: 1207–1210.

    Article  PubMed  CAS  Google Scholar 

  • Oakes, J. M., A. T. Revill, R. M. Connolly & S. I. Blackburn, 2005. Measuring carbon isotope ratios of microphytobenthos using compound-specific stable isotope analysis of phytol. Limnology and Oceanography Methods 3: 511–519.

    Google Scholar 

  • Palomares, M. L. D. & D. Pauly, 2008. The growth of jellyfishes. Hydrobiologia (this volume). doi: 10.1007/s 10750-008-9582-y.

    Google Scholar 

  • Papina, M., T. Meziane & R. Van Woesik, 2003. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology Part B 135: 533–537.

    Article  CAS  Google Scholar 

  • Pel, R., H. Hoogveld & V. Floris, 2003. Using the hidden isotopic heterogeneity in phyto-and zooplankton to unmask disparity in trophic carbon transfer. Limnology and Oceanography 48: 2200–2207.

    CAS  Google Scholar 

  • Phillips, D. L. & J. W. Gregg, 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179.

    Article  Google Scholar 

  • Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.

    Article  PubMed  Google Scholar 

  • Phillips, D. L., S. D. Newsome & J. W. Gregg, 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144: 520–527.

    Article  PubMed  Google Scholar 

  • Phleger, C. F., P. D. Nichols & P. Virtue, 1998. Lipids and trophodynamics of Antarctic zooplankton. Comparative Biochemistry and Physiology Part B 120: 311–323.

    Article  Google Scholar 

  • Pitt, K. A., A. L. Clement, R. M. Connolly & D. Thibault-Botha, 2008. Predation by jellyfish on large and emergent zooplankton: implications for benthic-pelagic coupling. Estuarine, Coastal and Shelf Science 76: 827–833.

    Article  Google Scholar 

  • Purcell, J. E., 1992. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay, USA. Marine Ecology Progress Series 87: 65–76.

    Article  Google Scholar 

  • Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates and effects on prey populations. Annales de l’Institut océanographique, Paris 73: 125–137.

    Google Scholar 

  • Purcell, J. E., 2003. Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata, and Aequorea aequorea, in Prince William Sound, Alaska. Marine Ecology Progress Series 246: 137–152.

    Article  Google Scholar 

  • Purcell, J. E., F. P. Cresswell, D. G. Cargo & V. S. Kennedy, 1991. Differential ingestion and digestion of bivalve larvae by the scyphozoan Chrysaora quinquecirrha and the Ctenophore Mnemiopsis leidyi. Biological Bulletin 180: 103–111.

    Article  Google Scholar 

  • Quoy, J. R. C. & J. P. Gaimard, 1824. Voyage de l’Uranie. Traité Zool 4: 712.

    Google Scholar 

  • Rolff, C., 2000. Seasonal variation in δ13C and δ15N of size-fractionated plankton at a coastal station in the northern Baltic proper. Marine Ecology Progress Series 203: 47–65.

    Article  CAS  Google Scholar 

  • Sakano, H., E. Fujiwara, S. Nohara & H. Ueda, 2005. Estimation of nitrogen stable isotope turnover rate of Oncorhynchus nerka. Environmental Biology of Fishes 72: 13–18.

    Article  Google Scholar 

  • Sargent, J. R., R. J. Parkes, I. Muellere-Harvey & R. J. Henderson, 1987. Lipid biomarkers in marine ecology. In Sleigh, M. A. (ed.), Microbes in the Sea. Ellis Horwood Ltd, Chichester: 119–138.

    Google Scholar 

  • Schmidt, K., A. Atkinson, D. Stubing, J. W. McClelland, J. P. Montoya & M. Voss, 2003. Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnology and Oceanography 48: 277–289.

    Article  Google Scholar 

  • Stoecker, D. K., A. E. Michaels & L. H. Davis, 1987. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. Journal of Plankton Research 9: 901–915.

    Article  Google Scholar 

  • Tarboush, R. A., S. E. MacAvoy, S. A. Macko & V. Con-naughton, 2006. Contribution of catabolic tissue replacement to the turnover of stable isotopes in Danio rerio. Canadian Journal of Zoology 84: 1453–1460.

    Article  CAS  Google Scholar 

  • Tieszen, L. L., T. W. Boutton, K. G. Tesdahl & N. A. Slade, 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57: 32–37.

    Article  Google Scholar 

  • Toonen, R. J. & R. Chia, 1993. Limitations of laboratory assessments of coelenterate predation: container effects on the prey selection of the limnomedusa, Proboscidactyla flavicirrata (Brandt). Journal of Experimental Marine Biology and Ecology 167: 215–235.

    Article  Google Scholar 

  • Towanda, T. & E. V. Thuesen, 2006. Ectosymbiotic behaviour of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum. Marine Ecology Progress Series 315: 221–236.

    Article  Google Scholar 

  • Van der Zanden, M. J. & J. B. Rasmussen, 2001. Variation in del15N and del13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  Google Scholar 

  • West, J. B., G. J. Bowen, T. E. Cerling & J. R. Ehleringer, 2006. Stable isotopes as one of nature’s ecological recorders. Trends in Ecology and Evolution 21: 408–414.

    Article  PubMed  Google Scholar 

  • Winning, M. A., R. M. Connolly, N. R. Loneragan & S. E. Bunn, 1999. 15N enrichment as a method of separating the isotopic signatures of seagrass and its epiphytes for food web analysis. Marine Ecology Progress Series 189: 289–294.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pitt, K.A., Connolly, R.M., Meziane, T. (2008). Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. In: Pitt, K.A., Purcell, J.E. (eds) Jellyfish Blooms: Causes, Consequences, and Recent Advances. Developments in Hydrobiology, vol 206. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9749-2_9

Download citation

Publish with us

Policies and ethics