Jellyfish in ecosystems, online databases, and ecosystem models

  • Daniel Pauly
  • William Graham
  • Simone Libralato
  • Lyne Morissette
  • M. L. Deng Palomares
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 206)

Abstract

There are indications that pelagic cnidar-ians and ctenophores (‘jellyfish’) have increased in abundance throughout the world, or that outbreaks are more frequent, although much uncertainty surrounds the issue, due to the scarcity of reliable baseline data. Numerous hypotheses have been proposed for the individual increases or outbreaks that are better documented, but direct experimental or manipulative studies at the ecosystem scale cannot be used for testing them. Thus, ecological modeling provides the best alternative to understand the role of jellyfish in large fisheries-based ecosystems; indeed, it is an approach consistent with new ecosystem-based fisheries management practices. Here, we provide an overview of online databases available to ecosystem modelers and discuss general aspects and shortcomings of the coverage of jellyfish in these databases. We then provide a summary of how jellyfish have been treated and parameterized by existing ecosystem models (specifically focusing on ‘Ecopath with Ecosim’ as a standard modeling toolset). Despite overall weaknesses in the parameterization of jellyfish in these models, interesting patterns emerge that suggest some systems, especially smaller and more structured ones, may be particularly vulnerable to long-term jellyfish biomass increase. Since jellyfish also feed on the eggs and larvae of commercially important food fish, outbreaks of jellyfish may ultimately imply a reduction in the fish biomass available to fisheries. On the other hand, jellyfish, which have been traditionally fished for human consumption in East and Southeast Asia, are now seen as a potential resource in other parts of the world, where pilot fisheries have emerged. It is also argued here that reduced predation on the benthic and pelagic stages of jellyfish, both a result of fishing, may be a strong contributing factor as well. For marine biologists specializing on jellyfish, this means that their research might become more applied. This implies that they would benefit from adopting some concepts and methods from fisheries biology and ecosystem modeling, and thus from using (and contributing to) online databases, such as SeaLife-Base and FishBase, developed to support such research. This would remedy the situation, documented here, wherein jellyfish are either infrequently included in food web models, typically constructed using the Ecopath with Ecosim software, or included as a single functional group with the characteristic of an ‘average’ jellyfish. Thus, jellyfish specialists could readily improve the jellyfish-related components of such models, and we show how they could do this. Also, it is suggested that when such improvement is performed, the resulting models can lead to non-intuitive inferences and hence interesting hypotheses on the roles of jellyfish in ecosystems. This is illustrated here through (a) an investigation of whether jellyfish are keystone species and (b) the identification of conditions under which (simulated) jellyfish outbreaks may occur.

Keywords

Ecopath with Ecosim FishBase SeaLifeBase Keystone species Fishing down marine food webs Jellyfish outbreaks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, K. R., 1971. Relation between production and biomass. Journal of the Fisheries Research Board of Canada 28: 1573–1578.Google Scholar
  2. Arai, M. N., 1987. Interactions of fish and pelagic coelenter-ates. Canadian Journal of Zoology 66: 1913–1927.CrossRefGoogle Scholar
  3. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman and Hall, New York: 316.Google Scholar
  4. Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87.CrossRefGoogle Scholar
  5. Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.CrossRefGoogle Scholar
  6. Baird, D. & R. E. Ulanowicz, 1989. Seasonal dynamics of the Chesapeake Bay ecosystem. Ecological Monographs 59: 329–364.CrossRefGoogle Scholar
  7. Bakun, A. & S. J. Weeks, 2004. Greenhouse gas build-up, sardines, submarine eruptions and the possibility of abrupt degradation of intense marine upwelling ecosystems. Ecology Letters 7: 1015–1023.CrossRefGoogle Scholar
  8. Bamstedt, U., S. Kaartvedt & M. Youngbluth, 2003. An evaluation of acoustic and video methods to estimate the abundance and vertical distribution of jellyfish. Journal of Plankton Research 25: 1307–1318.CrossRefGoogle Scholar
  9. Brierley, A. S., D. C. Boyer, B. E. Axelsen, C. P. Lynam, C. A. J. Sparks, H. J. Boyer & M. J. Gibbons, 2005. Towards the acoustic estimation of jellyfish abundance. Marine Ecology-Progress Series 295: 105–111.CrossRefGoogle Scholar
  10. Brodeur, R. D., H. Sugisaki & G. L. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology-Progress Series 233: 89–103.CrossRefGoogle Scholar
  11. Buchary, E., 1999. Evaluating the effect of the 1980 trawl ban in the Java Sea, Indonesia: an ecosystem-based approach. M.Sc. thesis. Department of Resource Management and Environmental Studies. The University of British Columbia, Vancouver, Canada.Google Scholar
  12. Buchary, E., T. J. Pitcher, W.-L. Cheung & T. Hutton, 2002. New ecopath models of the Hong Kong marine ecosystem. In Pitcher, T., E. Buchary & P. Trujillo (eds), Spatial Simulations of Hong Kong’s Marine Ecosystem. Fisheries Centre Research Reports (This and all other Fisheries Centre research Reports cited therein can be freely downloaded from: http://www.fisheries.ubc.ca/publications/ reports/fcrr.php) 10(3): 6–16.Google Scholar
  13. Cheung, W.-L., R. Watson & T. Pitcher, 2002. Policy simulation of fisheries in the Hong Kong marine ecosystems. In Pitcher, T. & K. Cochrane (eds), The Use of Ecosystem Models to Investigate Multispecies Management Strategies for Capture Fisheries. Fisheries Centre Research Reports 10(2): 46–54.Google Scholar
  14. Christensen, V. & D. Pauly, 1992. The ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169–185.CrossRefGoogle Scholar
  15. Christensen, V. & C. J. Walters, 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109–139.CrossRefGoogle Scholar
  16. Colin, S. P., J. H. Costello, W. M. Graham & J. Higgins, 2005. Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnology and Oceanography 50: 1264–1268.Google Scholar
  17. Coll, M., I. Palomera, S. Tudela & F. Sardaà, 2006. Trophic flows, ecosystem structure and fishing impact in the South Catalan Sea, Northwestern Mediterranean. Journal of Marine Systems 59: 63–96.CrossRefGoogle Scholar
  18. Coll, M., A. Santojanni, E. Arneri, I. Palomera & S. Tudela, 2007. An ecosystem model of the Northern and Central Adriatic Sea: analysis of ecosystem structure and fishing impacts. Journal of Marine Systems 67: 119–154.CrossRefGoogle Scholar
  19. Colombo, G. A., H. Mianzan & A. Madirolas, 2003. Acoustic characterization of gelatinous-plankton aggregations: four case studies from the Argentine continental shelf. ICES Journal of Marine Science 60: 650–657.CrossRefGoogle Scholar
  20. Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Marine Biology 124: 399–406.CrossRefGoogle Scholar
  21. Costello, J. H., B. K. Sullivan & D. J. Gifford, 2006a. A physical-biological interaction underlying variable phenological responses to climate change by coastal zooplankton. Journal of Plankton Research 28: 1099–1105.CrossRefGoogle Scholar
  22. Costello, J. H., B. K. Sullivan, D. J. Gifford, D. Van Keuren & L. J. Sullivan, 2006b. Seasonal refugia, shoreward thermal amplification, and metapopulation dynamics of the ctenophore Mnemiopsis leidyi in Narragansett Bay, Rhode Island. Limnology and Oceanography 51: 1819–1831.Google Scholar
  23. Cowan, J. H. & E. D. Houde, 1992. Size-dependent predation on marine fish larvae by ctenophores, scyphomedusae, and planktivorous fish. Fisheries Oceanography 1: 113–126.CrossRefGoogle Scholar
  24. Cox, S. P., T. E. Essington, J. F. Kitchell, S. J. D. Martell, C. J. Walters, C. Boggs & I. Kaplan, 2002. Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952–1998. II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. Canadian Journal of Fishery and Aquatic Sciences 59: 1736–1747.CrossRefGoogle Scholar
  25. de Lafontaine, Y. & W. C. Leggett, 1988. Predation by jellyfish on larval fish: an experimental evaluation employing in situ enclosures. Canadian Journal of Fisheries and Aquatic Sciences 45: 1173–1190.Google Scholar
  26. Dommasnes, A., V. Christensen, B. Ellertsen, C. Kvamme, W. Melle, L. Nottestad, T. Pedersen, S. Tjelmeland & D. Zeller, 2001. An Ecopath model for the Norwegian Sea and Barents Sea. In Guénette, S., V. Christensen & D. Pauly (eds), Fisheries Impacts on North Atlantic Ecosystems: Models and Analyses. Fisheries Centre Research Reports 9(4): 213–239.Google Scholar
  27. Dybas, C. L., 2005. Dead zones spreading in world oceans. BioScience 55(7): 552–557.CrossRefGoogle Scholar
  28. Estes, J. A. & J. F. Palmisano, 1974. Sea otters: their role in structuring nearshore communities. Science 185: 1058–1060.PubMedCrossRefGoogle Scholar
  29. Franklin, H. B., 2007. The Most Important Fish in the Sea: Menhaden and America. Island Press, Washington, DC.Google Scholar
  30. Froese, R. & D. Pauly (eds), 2000. FishBase 2000: Concepts, Design and Data Sources. ICLARM, Los Baños, Philippines [updates in www.fishbase.org].Google Scholar
  31. Graham, W. M., 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451: 97–111.CrossRefGoogle Scholar
  32. Graham, W. M. & R. M. Kroutil, 2001. Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. Journal of Plankton Research 23: 67–74.CrossRefGoogle Scholar
  33. Graham, W. M., F. Pages & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212.CrossRefGoogle Scholar
  34. Hall, S. J., 1999. The Effects of Fishing on Marine Ecosystems and Communities. Blackwell Science, Oxford.Google Scholar
  35. Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck & R. Watson, 2008. A global map of human impact on marine ecosystems. Science 319: 948–952.PubMedCrossRefGoogle Scholar
  36. Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R. Cooke, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner & R. R. Warner, 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–638.PubMedCrossRefGoogle Scholar
  37. Kawahara, M., S. Uye, K. Ohtsu & H. Izumi, 2006. Unusual population explosion of the giant jellyfish Nemopilemia nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Marine Ecology-Progress Series 307: 161–173.CrossRefGoogle Scholar
  38. Libralato, S., V. Christensen & D. Pauly, 2006. A method for identifying keystone species in food web models. Ecological Modelling 195: 153–171.CrossRefGoogle Scholar
  39. Lyman, C. P., M. J. Gibbons, B. E. Axelsen, C. A. J. Sparks, J. Coetzee, B. G. Heywood & A. S. Brierley, 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16: R492–R493.CrossRefGoogle Scholar
  40. Martell, S. J., A. I. Beattie, C. J. Walters, T. Nayar & R. Briese, 2002. Simulating fisheries management strategies in the Gulf of Georgia ecosystem using Ecopath with Ecosim 2002. In Pitcher, T. & K. Cochrane (eds), The Use of Ecosystem Models to Investigate Multispecies Management Strategies for Capture Fisheries. Fisheries Centre Research Reports 10(2): 16–23.Google Scholar
  41. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.CrossRefGoogle Scholar
  42. Mohammed, E., 2001. A model of the Lancaster Sound Region in the 1980s. In Guénette, S., V. Christensen & D. Pauly (eds), Fisheries Impacts on North Atlantic Ecosystems: Models and Analyses. Fisheries Centre Research Reports 9(4): 99–110.Google Scholar
  43. Morissette, L., 2007. Complexity, cost and quality of ecosystem models and their impact on resilience: a comparative analysis, with emphasis on marine mammals and the Gulf of St. Lawrence. PhD thesis, University of British Columbia, Vancouver, BC.Google Scholar
  44. Myers, R. A., J. K. Baum, T. D. Shepherd, S. P. Powers & C. H. Peterson, 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315: 1846–1850.PubMedCrossRefGoogle Scholar
  45. NRC, 2003. Decline of the Steller Sea Lion in Alaskan waters: untangling food webs and fishing nets. Committee on the Alaska Groundfish Fishery and Steller Sea Lions, Ocean Studies Board, Polar Research Board, Division on Earth and Life Studies, National Research Council of the National Academies. The National Academies Press, Washington, D.C.Google Scholar
  46. Okey, T. A., 2001. A’ straw-man’ Ecopath model of the Middle Atlantic Bight continental shelf, United States. In Guénette, S., V. Christensen & D. Pauly (eds), Fisheries Impacts on North Atlantic Ecosystems: Models and Analyses. Fisheries Centre Research Reports 9(4): 151–166.Google Scholar
  47. Okey, T. A. & D. Pauly (eds), 1998. A trophic mass-balance model of Alaska’s Prince William Sound Ecosystem, for the post-spill period 1994–1996, 2nd edn. Fisheries Centre Research Reports 7(4): 144.Google Scholar
  48. Okey, T. A., & R. Pugliese, 2001. A preliminary Ecopath Model of the Atlantic Continental Shelf adjacent to the south-eastern United States. In Guénette, S., V. Christensen & D. Pauly (eds), Fisheries Impacts on North Atlantic Ecosystems: Models and Analyses. Fisheries Centre Research Reports 9(4): 167–181.Google Scholar
  49. Okey, T. A., G. A. Vargo, S. Mackinson, M. Vasconcellos, B. Mahmoudi & C. A. Meyer, 2004. Simulating community effects of sea floor shading by plankton blooms over the West Florida Shelf. Ecological Modelling 172: 339–359.CrossRefGoogle Scholar
  50. Olesen, N. J., K. Frandsen & H. U. Riisgård, 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series 105: 9–18.CrossRefGoogle Scholar
  51. Paine, R. T., 1969. A note on trophic complexity and species diversity. American Naturalist 103: 91–93.CrossRefGoogle Scholar
  52. Paine, R. T., 1992. Food web interaction strength through field measurement of per capita interaction strength. Nature 355: 73–75.CrossRefGoogle Scholar
  53. Palomares, M. L. D. & D. Pauly, 2008. The growth of jellyfish. In K. A. Pitt & J. E. Purcell (eds) Jellyfish blooms: causes, consequences and recent advances. Hydrobiologia (this volume). doi:10.1007/s10750-008-9582-y.Google Scholar
  54. Palomares, M. L. D., E. Mohammed & D. Pauly, 2006. On European expeditions as a source of historic abundance data on marine organisms: a case study of the Falkland Islands. Environmental History 11: 835–847.CrossRefGoogle Scholar
  55. Pandolfi, J. M., J. B. C. Jackson, N. Baron, R. H. Bradbury, H. M. Guzman, T. P. Hughes, C. V. Kappel, F. Micheli, J. C. Ogden, H. P. Possingham & E. Sala, 2005. Are U.S. coral reefs on the slippery slope to slime? Science 307:1725–1726.PubMedCrossRefGoogle Scholar
  56. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. C. Torres Jr., 1998a. Fishing down marine food webs. Science 279: 860–863.PubMedCrossRefGoogle Scholar
  57. Pauly, D., V. Christensen, S. Guénette, T. J. Pitcher, U. R. Sumaila, C. J. Walters, R. Watson & D. Zeller, 2002. Towards sustainability in world fisheries. Nature 418: 689–695.PubMedCrossRefGoogle Scholar
  58. Pauly, D., V. Christensen & C. J. Walters, 2000. Ecopath, Ecosim and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science 57: 697–706.CrossRefGoogle Scholar
  59. Pauly, D. & M. L. Palomares, 2005. Fishing down marine food webs: it is far more pervasive than we thought. Bulletin of Marine Science 76: 197–211.Google Scholar
  60. Pauly, D., T. Pitcher & D. Preikshot, 1998b. Back to the Future: Reconstructing the Strait of Georgia Ecosystem. Fisheries Centre Research Reports 6(5): 99.Google Scholar
  61. Pauly, D. & R. Watson, 2005. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity. Philosophical Transactions of the Royal Society: Biological Sciences 360: 415–423.CrossRefGoogle Scholar
  62. Peach, M. B. & K. A. Pitt, 2005. Morphology of the nematocysts of the medusae of two scyphozoans, Catostylus mosaicus and Phyllorhiza punctata (Rhizostomeae): implications for capture of prey. Invertebrate Biology 124: 98–108.Google Scholar
  63. Pikitch, E. K., C. Santora, E. A. Babcock, A. Bakun, R. Bonfil, D. O. Conover, P. Dayton, P. Doukakis, D. Fluharty, B. Heneman, E. D. Houde, J. Link, P. A. Livingston, M. Mangel, M. K. McAllister, J. Pope & K. J. Sainsbury, 2006. Ecosystem-based fishery management. Science 305: 346–347.CrossRefGoogle Scholar
  64. Pinnegar, J. K., J. L. Blanchard, S. Mackinson, R. D. Scott & D. E. Duplisea, 2005. Aggregation and removal of weak-links in food-web models: system stability and recovery from disturbance. Ecological Modelling 184: 229–248.CrossRefGoogle Scholar
  65. Pitt, K. A., A.-L. Clement, R. M. Connolly & D. Thibault-Botha, 2008. Predation by jellyfish on large and emergent zooplankton: implications for benthic-pelagic coupling. Estuarine, Coastal and Shelf Science 76: 827–833.CrossRefGoogle Scholar
  66. Polis, G. A. & D. R. Strong, 1996. Food web complexity and community dynamics. American Naturalist 147: 813–846.CrossRefGoogle Scholar
  67. Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, G. Daily, J. C. Castilla, J. C. Lubchenco & R. T. Paine, 1996. Challenges in the quest for keystones. Bioscience 46: 609–620.CrossRefGoogle Scholar
  68. Purcell, J. E., 1985. Predation on fish eggs and larvae by pelagic cnidarians and ctenophores. Bulletin of Marine Science 37: 739–755.Google Scholar
  69. Purcell, J. E., 2003. Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Marine Ecology Progress Series 246: 137–152.Google Scholar
  70. Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.CrossRefGoogle Scholar
  71. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobi-ologia 451: 27–44.CrossRefGoogle Scholar
  72. Purcell, J. E. & C. E. Mills, 1988. The correlation between nematocyst types and diets in pelagic hydrozoa. In Hes-singer, D. A. & H. Lenhoff (eds), The Biology of Nematocysts. Academic Press, New York.Google Scholar
  73. Purcell, J. E., S. Uye & W. T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology-Progress Series 350: 153–174.CrossRefGoogle Scholar
  74. Rabalais, N. N., R. E. Turner & W. J. Wiseman Jr., 2002. Gulf of Mexico hypoxia—a.k.a. ‘the Dead Zone’. Annual Review of Ecology and Systematics 33: 235–263.CrossRefGoogle Scholar
  75. Roberts, C., 2007. The Unnatural History of the Sea: The Past and Future of Humanity and Fishing. Island Press, Washington, DC.Google Scholar
  76. Robison, B. H., 2004. Deep pelagic biology. Journal of Experimental Marine Biology and Ecology 300: 253–272.CrossRefGoogle Scholar
  77. Ruckelshaus, M., T. Klinger, N. Knowlton & D. R. Demaster, 2008. Marine ecosystem-based management in practice: scientific, and governance challenges. Bioscience 58:53–63.CrossRefGoogle Scholar
  78. Sáenz-Arroyo, A., C. M. Roberts, J. Torre, M. Cariño-Olvera & R. R. Enríquez-Andrade, 2005. Rapidly shifting environmental baselines among fishers of the Gulf of California. Proceeding of the Royal Society (B) 272: 1957–1962.CrossRefGoogle Scholar
  79. Sagasti, A., L. C. Schaffne & J. E. Duffy, 2001. Effects of periodic hypoxia on mortality, feeding and predation in an estuarine epifaunal community. Journal of Experimental Marine Biology and Ecology 258: 237–283.CrossRefGoogle Scholar
  80. Trites, A. W., P. A. Livingston, S. Mackinson, M. C. Vasconcellos, A. M. Springer & D. Pauly, 1999. Ecosystem Change and the Decline of Marine Mammals in the Eastern Bering Sea: Testing the Ecosystem Shift and Commercial Whaling Hypotheses. Fisheries Centre Research Reports 7(1): 106.Google Scholar
  81. Ulanowicz, R. E. & C. J. Puccia, 1990. Mixed trophic impacts in ecosystems. Coenoses 5: 7–16.Google Scholar
  82. Uye, S. & H. Shimauchi, 2005. Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. Journal of Plankton Research 27: 237–248.CrossRefGoogle Scholar
  83. Van der Land, J. (ed.), 2006. UNESCO-IOC Register of Marine Organisms (version 7 November 2006). In Bisby, F. A., Y. R. Roskov, M. A. Ruggiero, T. M. Orrell, L. E. Paglinawan, P. W. Brewer, N. Bailly & J. van Hertum (eds), Species 2000 and ITIS Catalogue of Life: 2007 Annual Checklist. CD-ROM; Species 2000: Reading, UK.Google Scholar
  84. Van Der Veer, H. W. & W. Oorthuysen, 1985. Abundance, growth and food demand of the scyphomedusa Aurelia aurita in the western Wadden Sea. Netherlands Journal of Sea Research 19: 38–44.CrossRefGoogle Scholar
  85. Walters, C. J., V. Christensen, S. J. Martell & J. F. Kitchell, 2005. Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES Journal of Marine Science 62: 558–568.CrossRefGoogle Scholar
  86. Walters, C. J., V. Christensen & D. Pauly, 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries 7: 139–172.CrossRefGoogle Scholar
  87. Walters, C. J., D. Pauly & V. Christensen, 1998. Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2: 539–554.CrossRefGoogle Scholar
  88. Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamoto, T. Shimura, N. Honda, Y. Fujimori & T. Mu-kai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Daniel Pauly
    • 1
  • William Graham
    • 2
  • Simone Libralato
    • 3
  • Lyne Morissette
    • 4
  • M. L. Deng Palomares
    • 1
  1. 1.Sea Around Us Project, Fisheries CentreUniversity of British ColumbiaVancouverCanada
  2. 2.Dauphin Island Sea Lab and University of South AlabamaDauphin IslandUSA
  3. 3.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale—OGSSgonicoItaly
  4. 4.Institut des Sciences de la Mer de RimouskiRimouskiCanada

Personalised recommendations