Skip to main content

Kinematic properties of the jellyfish Aurelia sp

  • Chapter
  • First Online:
Jellyfish Blooms: Causes, Consequences, and Recent Advances

Part of the book series: Developments in Hydrobiology ((DIHY,volume 206))

Abstract

A new, relatively simple method for determining the kinematic properties of jellyfish is presented. The bell movement of the scyphomedusa (Aurelia sp.) during its pulsation cycle was analysed using computer-aided visualization. Sequences of video images of individual Aurelia in a large aquarium were taken using a standard video camera. The images were then processed to obtain time series of the relative positions of selected points on the surface of the medusa’s bell. The duration of the bell relaxation was longer than that of the bell contraction, thereby confirming published results. In addition, the area of the exumbrellar surface of Aurelia increased during bell relaxation by more than 1.3-times that of the exumbrellar surface area during the maximum contraction of the bell. The volume change during the bell pulsation cycle was also measured using the same visualization method. Significant changes, of up to 50%, in the subumbrellar cavity volume were revealed while, in contrast, the volume between the exumbrellar and subumbrellar surfaces generally remained unchanged during the entire pulsation cycle of the bell. Comparison of the time series of the exumbrellar surface area and of the subumbrellar cavity volume indicated that the change of volume takes place before the change of the surface area of the bell.

Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attrill, M. J., J. Wright & M. Edwards, 2007. Climate-related increases in jellyfish frequency suggest more gelatinous future for the North Sea. Limnology & Oceanography 52: 480–485.

    Google Scholar 

  • Brodeur, R. D., C. E. Mills, J. E. Overland, G. E. Walters & J. D. Schumacher, 1999. Evidence for a substantial increase in gelatinous zooplankton in the Bering sea, with a possible link to climate change. Fisheries Oceanography 8: 296–306.

    Article  Google Scholar 

  • Colin, S. P. & J. H. Costello, 2002. Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. The Journal of Experimental Biology 205: 427–437.

    PubMed  Google Scholar 

  • Colin, S. P., J. H. Costello & H. Kordula, 2006. Upstream foraging by medusae. Marine Ecology Progress Series 327: 143–155.

    Article  Google Scholar 

  • Costello, J. H., S. P. Colin & J. O. Dabiri, 2008. Medusan morphospace: phylogenetic constrains, biomechanical solutions, and ecological consequences. Invertebrate Biology, doi:10.1111/j.1744-7410.2008.00126x.

    Google Scholar 

  • Costello, J. H. & S. P. Colin, 1994. Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Marine Biology 121: 327–334.

    Article  Google Scholar 

  • Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Marine Biology 124:399–406.

    Article  Google Scholar 

  • D’Ambra, I., J. H. Costello & F. Bentivegna, 2001. Flow and prey capture by the scyphomedusa Phyllorhiza punctata von Lendenfeld 1884. Hydrobiologia 451: 223–227.

    Article  Google Scholar 

  • Dabiri, J. O., S. P. Colin & J. H. Costello, 2006. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. Journal of Experimental Biology 209: 2025–2033.

    Article  PubMed  Google Scholar 

  • Dabiri, J. O., S. P. Colin, J. H. Costello & M. Gharib, 2005. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. Journal of Experimental Biology 208: 1257–1265.

    Article  PubMed  Google Scholar 

  • Dabiri, J. O. & M. Gharib, 2003. Sensitivity analysis of kinematic approximations in dynamic medusan swimming models. Journal of Experimental Biology 206: 3675–3680.

    Article  PubMed  Google Scholar 

  • Daniel, T. L., 1983. Mechanics and energetics of medusan jet propulsion. Canadian Journal of Zoology 61: 1406–1420.

    Google Scholar 

  • DeMont, M. E. & J. M. Gosline, 1988. Mechanics of jet propulsion in the hydromedusan jellyfish, Polyorchis penicillatus. I. Mechanical properties of thelocomotor structure. Journal of Experimental Biology 134: 313–332.

    Google Scholar 

  • Ford, M. D. & J. H. Costello, 2000. Kinematic comparison of bell contraction by four species of hydromedusae. Scientia Marina 64(Suppl 1): 47–53.

    Google Scholar 

  • Ford, M. D., J. H. Costello & K. B. Heilderberg, 1997. Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha. Marine Biology 129: 355–362.

    Article  Google Scholar 

  • Gladfelter, W. B., 1972. Structure and function of the loco-motory system of the Scyphomedusa Cyanea capilata. Marine Biology 14: 150–160.

    Google Scholar 

  • Gladfelter, W. B., 1973. A comparative analysis of the loco-motory systems of medusoid Cnidaria. Helgolnder wiss. Meeresunters 25: 228–272.

    Google Scholar 

  • Graham, M., 2001. Numerical increases and distribution shifts of Chrysaora quiquecirrha (Desor) and Aurelia aurita (Linne) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydobiologia 451: 97–111.

    Google Scholar 

  • Graham, M., D. L. Martin, D. Felder, V. L. Asper & H. M. Perry, 2003. Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biological Invasions 5: 53–69.

    Article  Google Scholar 

  • Hays, G. C., A. J. Richardson & C. Robinson, 2005. Climate change and marine plankton. Trends in Ecology and Evolution 20: 337–344.

    Article  PubMed  Google Scholar 

  • Lauder, G. V. & E. D. Tytell, 2006. Hydrodynamics of undulatory propulsion. Fish Physiology 23: 425–468.

    Article  Google Scholar 

  • Malej, A. & A. Malej, 2004. Invasion of the jellyfish Pelagia noctiluca in the Northern Adriatic: a non-success story. In Dumont, H., T. Shiganova & U. Niermann (eds.), Aquatic Invasions in the Black, Caspian, and Mediterranean Seas. Kluwer Academic Press, Dordrecht: 273–285.

    Chapter  Google Scholar 

  • Malej, A., V. Turk, D. Lučić & A. Benović, 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology 151: 827–841.

    Article  Google Scholar 

  • Matanoski, J. C. & R. R. Hood, 2006. An individual-based numerical model of medusa swimming behaviour. Marine Biology 149: 595–608.

    Article  Google Scholar 

  • Megill, W. M., 2002. The biomechanics of jellyfish swimming. Ph.D. Dissertation, Department of Zoology, University of British Columbia, 116 pp.

    Google Scholar 

  • Mills, C. B., 1981. Diversity of swimming behaviours in hydromedusae as related to feeding and utilization of space. Marine Biology 64: 185–189.

    Google Scholar 

  • Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydobiologia 451: 27–44.

    Article  Google Scholar 

  • Sach, L., 1997. Angewandte Statistik: Anwendung statistischer Methoden. Springer-Verlag, Berlin.

    Google Scholar 

  • Shorten, M., J. Davenport, J. E. Seymour, M. C. Cross, T. J. Carrette, G. Woodward & T. F. Cross, 2005. Kinematic analysis of swimming in Australian box jellyfish, Chiropsalmus sp. and Chironex flecheri (Cubozoa, Cnidaria: Chirodropidae). Journal of Zoology 267: 371–380.

    Article  Google Scholar 

  • Širok, B., T. Bajcar & M. Dular, 2002. Reverse flow phenomenon in a rotating diffuser. Journal of Flow Visualization and Image Processing 9: 193–210.

    Google Scholar 

  • Sobel, I., 1978. Neighborhood coding of binary images for fast contour following and general array binary processing. Computer Graphics and Image Processing 8: 127–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bajcar, T., Malačič, V., Malej, A., Širok, B. (2008). Kinematic properties of the jellyfish Aurelia sp. In: Pitt, K.A., Purcell, J.E. (eds) Jellyfish Blooms: Causes, Consequences, and Recent Advances. Developments in Hydrobiology, vol 206. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9749-2_20

Download citation

Publish with us

Policies and ethics