Skip to main content

Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics

  • Chapter
  • First Online:

Part of the book series: Developments in Hydrobiology ((DIHY,volume 206))

Abstract

Jellyfish populations can grow rapidly to attain large biomasses and therefore can represent significant stocks of carbon and nitrogen in the ecosystem. Blooms are also generally short-lived, lasting for just weeks or months, after which time the population can decline rapidly, sink to the bottom and decompose. The influence of decomposing jellyfish (Catostylus mosaicus, Scyphozoa) on benthic dissolved oxygen and nutrient fluxes was examined in a mesocosm experiment at Smiths Lake, a coastal lagoon in New South Wales, Australia. Sediment (10l) was placed in each of 10 mesocosms (50 x 40 cm, 30 cm deep and ~ 60 l volume) which were supplied a continuous flow of fresh lagoon water. One jellyfish (1.6 kg wet weight or ~25 g C m-2) was added to each of five mesocosms, with the remaining five mesocosms serving as controls. Exchanges of dissolved oxygen, organic and inorganic nutrients between the benthos and water column were measured 14 times over a period of nine days. The addition of dead jellyfish tissue to the mesocosm sediments initially resulted in an efflux of phosphate, dissolved organic nitrogen and dissolved organic phosphorus to the water column. Dissolved organic nitrogen and dissolved organic phosphorus effluxed at rates more than 8 and 25 times greater than those measured in control mesocosms, respectively. This was probably due to the intracellular nutrients leaching from the jellyfish tissues. As decomposition proceeded, a large quantity of ammonium was released to the water column and sediment oxygen demand increased, indicating bacterial decomposition was dominant. Overall the addition of dead jellyfish caused a 454% increase in ammonium efflux and 209% increase in sediment oxygen demand over the 9-day experiment relative to the controls. The decomposition of large numbers of jellyfish after major bloom events could be a significant source of nutrients and, depending on the system, could have a major impact on primary production. Moreover, depending on the degree of mixing in the water column, decaying jellyfish may also contribute to bottom water hypoxia.

Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • APHA, 1999. Standard Methods for Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Arai, M. N., 1988. Interactions of fish and pelagic coelenter-ates. Canadian Journal of Zoology 66: 1913–1927.

    Article  Google Scholar 

  • Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London.

    Google Scholar 

  • Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.

    Article  Google Scholar 

  • Arai, M. N., J. A. Ford & J. N. C. Whyte, 1989. Biochemical composition of fed and starved Aequorea victoria (Murbach et Shearer, 1902) (Hydromedusa). Journal of Experimental Marine Biology and Ecology 127: 289–299.

    Article  CAS  Google Scholar 

  • Azzoni, R., G. Giordani, M. Bartoli, D. T. Welsh & P. Viaroli, 2001. Iron, sulphur and phosphorus cycling in the rhizosphere sediments of a eutrophic Ruppia cirrhosa meadow of the (Valle Smarlacca, Italy). Journal of Sea Research 45: 15–26.

    Article  CAS  Google Scholar 

  • Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.

    Article  Google Scholar 

  • Blackburn, T. H. & N. D. Blackburn, 1993. Rates of microbial processes in sediments. Philosophical Transactions: Physical Sciences and Engineering 344: 49–58.

    Article  CAS  Google Scholar 

  • Blackburn, T. H. & K. Henriksen, 1983. Nitrogen cycling in different types of sediments from Danish waters. Limnology and Oceanography 28: 477–493.

    CAS  Google Scholar 

  • Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–98.

    Article  Google Scholar 

  • Fenchel, T., G. M. King & T. H. Blackburn, 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. Academic Press, San Diego.

    Google Scholar 

  • Frost, P. C., R. S. Stelzer, G. A. Lamberti & J. J. Elser, 2002. Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N:P ratios in lentic and lotic habitats. Journal of the North American Ben-thological Society 2: 515–528.

    Article  Google Scholar 

  • Gorsky, G., S. Dallot, J. Sardou, R. Fenaux, C. Carre & I. Palazzoli, 1988. C and N composition of some northwestern Mediterranean zooplankton and micronekton species. Journal of Experimental Marine Biology and Ecology 124: 133–144.

    Article  CAS  Google Scholar 

  • Graham, W. M., 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linne) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451: 97–111.

    Article  Google Scholar 

  • Hagadorn, J. W., R. H. Dott Jr. & D. Damrow, 2002. Stranded on a late Cambrian shoreline: medusae from central Wisconsin. Geology 30: 147–150.

    Article  Google Scholar 

  • Hay, S., 2006. Marine ecology: gelatinous bells may ring change in marine ecosystems. Current Biology 16: R679–R682.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, R. A., 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews 23: 563–590.

    Article  PubMed  CAS  Google Scholar 

  • Keister, J. E., E. D. Houde & D. L. Breitburg, 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Marine Ecology Progress Series 205: 43–59.

    Article  Google Scholar 

  • Kingsford, M. J., K. A. Pitt & B. M. Gillanders, 2000. Management of jellyfish fisheries with special reference to the order Rhizostomeae. Oceanography and Marine Biology: An Annual Review 38: 85–156.

    Google Scholar 

  • Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.

    Article  Google Scholar 

  • Lomstein, B. A., L. B. Guldberg & J. Hansen, 2006. Decomposition of Mytilus edulis: the effect on sediment nitrogen and carbon cycling. Journal of Experimental Marine Biology and Ecology 329: 251–264.

    Article  CAS  Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.

    Article  Google Scholar 

  • Pitt, K. A. & M. J. Kingsford, 2003a. Temporal variation in the virgin biomass of the edible jellyfish, Catostylus mosaicus (Scyphozoa, Rhizostomeae). Fisheries Research 63: 303–313.

    Article  Google Scholar 

  • Pitt, K. A. & M. J. Kingsford, 2003b. Temporal and spatial variation in recruitment and growth of medusae of the jellyfish, Catostylus mosaicus (Scyphozoa: Rhizostomeae). Marine and Freshwater Research 54: 117–125.

    Article  Google Scholar 

  • Pitt, K. A., K. Koop & D. Rissik, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). Journal of Experimental Marine Biology and Ecology 315: 71–86.

    Article  CAS  Google Scholar 

  • Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schneider, G., 1990. Phosphorus content of marine zooplank-ton dry material and some consequences; a short review. Plankton Newsletter 12: 41–44.

    Google Scholar 

  • Shenker, J. M., 1985. Carbon content of the neritic scyp-homedusa Chrysaora fuscescens. Journal of Plankton Research 7: 169–173.

    Article  Google Scholar 

  • Shushkina, E. A., E. I. Musaeva, L. L. Anokhina & T. A. Lukasheva, 2000. Role of gelatinous macroplank-ton: medusas Aurelia and ctenophores Mnemiopsis and Beroe in the planktonic communities of the Black Sea. Okeanologiya 40: 859–866.

    Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Titelman, J., L. Riemann, T. A. Sornes, T. Nilsen, P. Griekspoor & U. Båmstedt, 2006. Turnover of dead jellyfish: stimulation and retardation of microbial activity. Marine Ecology Progress Series 325: 43–58.

    Article  CAS  Google Scholar 

  • Welsh, D. T., 2003. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chemistry and Ecology 19: 321–342.

    Article  CAS  Google Scholar 

  • Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamoto, T. Shimura, N. Honda, Y. Fujimori & T. Mukai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

West, E.J., Welsh, D.T., Pitt, K.A. (2008). Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. In: Pitt, K.A., Purcell, J.E. (eds) Jellyfish Blooms: Causes, Consequences, and Recent Advances. Developments in Hydrobiology, vol 206. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9749-2_11

Download citation

Publish with us

Policies and ethics