Skip to main content

Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production

  • Chapter
  • First Online:
Jellyfish Blooms: Causes, Consequences, and Recent Advances

Part of the book series: Developments in Hydrobiology ((DIHY,volume 206))

Abstract

Due to their boom and bust population dynamics and the enormous biomasses they can attain, jellyfish and ctenophores can have a large influence on the cycling of carbon (C), nitrogen (N) and phosphorus (P). This review initially summarises the biochemical composition of jellyfish, and compares and contrasts the mechanisms by which non-zooxanthellate and zooxanthellate jellyfish acquire and recycle C, N and P. The potential influence of elemental cycling by populations of jellyfish on phytoplankton and bacte-rioplankton production is then assessed. Non-zooxanthellate jellyfish acquire C, N and P predominantly through predation on zooplankton with smaller contributions from the uptake of dissolved organic matter. C, N and P are regenerated via excretion of inorganic (predominantly ammonium (NH4 +) and phosphate (PO4 3-)) and dissolved organic forms (e.g. dissolved free amino acids and dissolved primary amines). Inorganic nutrients excreted by jellyfish populations provide a small but significant proportion of the N and P required for primary production by phytoplankton. Excretion of dissolved organic matter may also support bacterioplankton production but few data are available. In contrast, zooxanthellate medusae derive most of their C from the translocation of photosynthetic products, exhibit no or minimal net release of N and P, and may actively compete with phytoplankton for dissolved inorganic nutrients. Decomposition of jellyfish blooms could result in a large release of inorganic and organic nutrients and the oxygen demand required to decompose their tissues could lead to localised hypoxic or anoxic conditions.

Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anninsky, B. E., 1988. The rate and efficiency of copepod assimilation by scyphoid medusa Aurelia aurita L. Ekologiya Morya 28: 58–64.

    Google Scholar 

  • Anninsky, B. E., G. A. Finenko, G. I. Abolmasova, E. S. Hu-bareva, L. S. Svetlichny, L. Bat & A. E. Kideys, 2005. Effect of starvation on the biochemical compositions and respiration rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. Journal of the Marine Biological Association United Kingdom 85: 549–561.

    Article  CAS  Google Scholar 

  • Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London.

    Google Scholar 

  • Arai, M. N., J. A. Ford & J. N. C. Whyte, 1989. Biochemical composition of fed and starved Aequorea victoria (Murbach et Shearer, 1902) (Hydromedusa). Journal of Experimental Marine Biology and Ecology 127: 289–299.

    Article  CAS  Google Scholar 

  • Bailey, T. G., J. J. Torres, M. J. Youngbluth & G. P. Owen, 1994a. Effect of decompression on mesopelagic gelatinous zooplankton: a comparison of in situ and shipboard measurements of metabolism. Marine Ecology Progress Series 113: 13–27.

    Article  Google Scholar 

  • Bailey, T. G., M. J. Youngbluth & G. P. Owen, 1994b. Chemical composition and oxygen consumption rates of the ctenophore Bolinopsis infundibulum from the Gulf of Maine. Journal of Plankton Research 16: 673–689.

    Article  CAS  Google Scholar 

  • Bailey, T. G., M. J. Youngbluth & G. P. Owen, 1995. Chemical composition and metabolic rates of gelatinous zooplankton from midwater and benthic boundary layer environments off Cape Hatteras, North Carolina, USA. Marine Ecology Progress Series 122: 121–134.

    Article  CAS  Google Scholar 

  • Balderston, W. L. & G. Claus, 1969. A study of the symbiotic relationship between Symbiodinium microadriaticum Freudenthal, a zooxanthella, and the upside down jellyfish Cassiopea sp. Nova Hedwigia 17: 373–382.

    Google Scholar 

  • Båmstedt, U., 1988. Interspecific, seasonal and diel variations in zooplankton trypsin and amylase activities in Kosterfjorden, western Sweden. Marine Ecology Progress Series 44: 15–24.

    Article  Google Scholar 

  • Båmstedt, U. & H. R. Skjoldal, 1980. RNA concentration of zooplankton: relationship with size and growth. Limnology and Oceanography 25: 304–316.

    Google Scholar 

  • Besiktepe, S. & H. G. Dam, 2002. Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. Marine Ecology Progress Series 229: 151–164.

    Article  Google Scholar 

  • Biggs, D., 1977. Respiration and ammonium excretion by open ocean gelatinous zooplankton. Limnology and Oceanography 22: 108–117.

    CAS  Google Scholar 

  • Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.

    Google Scholar 

  • Blanquet, R. S. & M. A. Phelan, 1987. An unusual blue mes-ogleal protein from the mangrove jellyfish Cassiopea xamachana. Marine Biology 94: 423–430.

    Article  CAS  Google Scholar 

  • Brodeur, R., H. Sugisaki & G. J. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.

    Article  Google Scholar 

  • Bronk, D. A., J. H. See, P. Bradley & L. Killberg, 2006. DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences Discussions 3: 1247–1277.

    Google Scholar 

  • Carroll, S. & R. S. Blanquet, 1984. Alanine uptake by isolated zooxanthellae of the mangrove jellyfish, Cassiopea xamachana. I. Transport mechanisms and utilization. Biological Bulletin 166: 409–418.

    Article  CAS  Google Scholar 

  • Cates, N., 1975. Productivity and organic consumption in Cassiopea and Condylactus. Journal of Experimental Marine Biology and Ecology 18: 55–59.

    Article  Google Scholar 

  • Ceccaldi, H. J., A. Kanazawa & S.-I. Teshima, 1978. Chemical composition of some Mediterranean macroplanktonic organisms. 1. Proximate analysis. Tethys 8: 295–298.

    Google Scholar 

  • Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–68.

    Article  Google Scholar 

  • Cohen, J. H. & R. B. Forward, 2003. Ctenophore kairomones and modified aminosugar disaccharides alter the shadow response in a larval crab. Journal of Plankton Research 25:203–213.

    Article  CAS  Google Scholar 

  • Conover, R. J., 1966. Assimilation of organic matter by zoo-plankton. Limnology and Oceanography 11: 338–345.

    Google Scholar 

  • Conover, R. J. & V. Francis, 1973. The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Marine Biology 18: 272–283.

    Google Scholar 

  • Costello, J., 1991. Complete carbon and nitrogen budgets for the hydromedusa Cladonema californicum (Anthomedu-sa: Cladonemidae). Marine Biology 108: 119–128.

    Article  CAS  Google Scholar 

  • del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

    Article  Google Scholar 

  • del Giorgio, P. A. & R. H. Peters, 1993. Balance between phytoplankton production and plankton respiration in lakes. Canadian Journal of Fisheries and Aquatic Science 50: 282–289.

    Article  Google Scholar 

  • Dicke, M. & M. W. Sabelis, 1988. Infochemical terminology: based on cost-benefit analysis rather than compound origins. Functional Ecology 2: 131–139.

    Article  Google Scholar 

  • Ducklow, H. W. & R. Mitchell, 1979. Composition of mucus released by coral reef coelenterates. Limnology and Oceanography 24: 706–714.

    CAS  Google Scholar 

  • Fenchel, T., G. M. King & T. H. Blackburn, 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. Academic Press, San Diego: 307 pp.

    Google Scholar 

  • Ferguson, J. C., 1982. A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biological Bulletin 162: 1–17.

    Article  CAS  Google Scholar 

  • Ferguson, J. C., 1988. Autoradiographic demonstration of the use of free amino acid by Sargasso Sea zooplankton. Journal of Plankton Research 10: 1225–1238.

    Article  Google Scholar 

  • Finenko, G. A., B. E. Anninsky, Z. A. Romanova, G. I. Abolmasova & A. E. Kideys, 2001. Chemical composition, respiration and feeding rates of the new alien ctenophore, Beroe ovata, in the Black Sea. Hydrobiologia 451: 177–186.

    Article  Google Scholar 

  • Gorsky, G., S. Dallot, J. Sardou, R. Fenaux, C. Carre & I. Palazzoli, 1988. C and N composition of some northwestern Mediterranean zooplankton and micronekton species. Journal of Experimental Marine Biology and Ecology 124: 133–144.

    Article  CAS  Google Scholar 

  • Hansell, D. A. & C. A. Carlson, 2002. Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego.

    Google Scholar 

  • Hansson, L. J. & B. Norman, 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktonic bacteria. Marine Biology 121: 527–532.

    Article  CAS  Google Scholar 

  • Hay, S., 2006. Marine ecology: gelatinous bells may bring change in marine ecosystems. Current Biology 16: R679–R682.

    Article  PubMed  CAS  Google Scholar 

  • He, X. & W.-X. Wang, 2006. Releases of ingested phytoplankton carbon by Daphnia magna. Freshwater Biology 51: 649–665.

    Article  CAS  Google Scholar 

  • Heeger, T. & H. Möller, 1987. Ultrastructural observations on prey capture and digestion in the scyphomedusa Aurelia aurita. Marine Biology 96: 391–400.

    Article  Google Scholar 

  • Hessinger, D. A. & H. M. Lenhoff, 1988. The Biology of Nematocysts. Academic Press, San Diego.

    Google Scholar 

  • Hoeger, U., 1983. Biochemical composition of ctenophores. Journal of Experimental Marine Biology and Ecology 72: 251–261.

    Article  CAS  Google Scholar 

  • Hofmann, D. K. & P. Kremer, 1981. Carbon metabolism and strobilation in Cassiopea andromedea (Cnidaria: Scy-phozoa): significance of endosymbiotic dinoflagellates. Marine Biology 65: 25–33.

    Article  CAS  Google Scholar 

  • Ikeda, T., 1972. Chemical composition and nutrition of zoo-plankton in the Bering Sea. In Takenouti, A. Y. (ed.), Biological Oceanography of the Northern Pacific Ocean. Idemitsu Shoten, Tokyo: 433–442.

    Google Scholar 

  • Ikeda, T., 1974. Nutritional ecology of marine zooplankton. Memoirs of the Faculty of Fisheries Hokkaido University 22: 1–97.

    Google Scholar 

  • Ikeda, T., 1985. Metabolic rates of epipelagic marine zoo-plankton as a function of body mass and temperature. Marine Biology 85: 1–11.

    Article  Google Scholar 

  • Jawed, M., 1973. Ammonia excretion by zooplankton and its significance to primary productivity during summer. Marine Biology 23: 115–120.

    Article  CAS  Google Scholar 

  • Kasuya, T., T. Ishimaru & M. Murano, 2000. Metabolic characteristics o the lobate ctenophore Bolinopsis mikado (Moser). Plankton Biology and Ecology 47: 114–121.

    Google Scholar 

  • Katechakis, A., H. Stirbor, U. Sommer & T. Hansen, 2004. Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum den-ticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). Journal of Plankton Research 26: 589–603.

    Article  Google Scholar 

  • Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith & J. C. Stevenson, 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kingsford, M. J., K. A. Pitt & B. M. Gillanders, 2000. Management of jellyfish fisheries with special reference to the order Rhizostomeae. Oceanography and Marine Biology: An Annual Review 38: 85–156.

    Google Scholar 

  • Kinoshita, J., J. Hiromi & Y. Nakamura, 2000. Feeding of the scyphomedusa Cyanea nozakii on mesozooplankton. Plankton Biology and Ecology 47: 43–47.

    Google Scholar 

  • Kirchman, D. L., 2000. Microbial Ecology of the Oceans. Wiley-Liss, New York.

    Google Scholar 

  • Kremer, P., 1975. Excretion and body composition of the ctenophore Mnemiopsis leidyi (A. Agassiz): comparisons and consequences. In 10th European Symposium on Marine Biology, Ostend, Belgium: 351–362.

    Google Scholar 

  • Kremer, P., 1977. Respiration and excretion by the ctenophore Mnemiopsis leidyi. Marine Biology 44: 43–50.

    Article  CAS  Google Scholar 

  • Kremer, P., 1982. Effect of food availability on the metabolism of the ctenophore Mnemiopsis mccradyi. Marine Biology 71: 149–156.

    Article  Google Scholar 

  • Kremer, P., 2005. Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. Journal of the Marine Biological Association of the United Kingdom 85: 613–625.

    Article  Google Scholar 

  • Kremer, P., M. F. Canino & R. W. Gilmer, 1986. Metabolism of epipelagic tropical ctenophores. Marine Biology 90: 403–412.

    Article  Google Scholar 

  • Kremer, P., J. Costello, J. Kremer & M. Canino, 1990. Significance of photosynthetic endosymbionts to the carbon budget of the scyphomedusa Linuche unguiculata. Limnology and Oceanography 35: 609–624.

    Article  CAS  Google Scholar 

  • Kremer, P. & M. R. Reeve, 1989. Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. 2. Carbon budgets and growth model. Journal of Plankton Research 11: 553–574.

    Article  Google Scholar 

  • Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.

    Article  Google Scholar 

  • Lesser, M. P., C. H. Mazel, M. Y. Gorbunov & P. G. Fal-kowski, 2004. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305: 997–1000.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. H. & D. C. Smith, 1971. The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proceedings of the Royal Society of London Series B 178: 111–129.

    Article  CAS  Google Scholar 

  • Lucas, C. H., 1994. Biochemical composition of Aurelia aurita in relation to age and sexual maturity. Journal of Experimental Marine Biology and Ecology 183: 179–182.

    Article  CAS  Google Scholar 

  • Lutcavage, M. & P. L. Lutz, 1986. Metabolic rate and food energy requirements of the leatherback sea turtle, Derm-ochelys coriacea. Copeia 1986: 796–798.

    Article  Google Scholar 

  • Lynam, C. P., M. J. Gibbons, E. A. Bjørn, C. A. J. Sparks, B. G. Heywood & A. S. Brierley, 2006. Jellyfish take over fish in a heavily fished system. Current Biology 16: R492–R493.

    Article  PubMed  CAS  Google Scholar 

  • Malej, A., 1989. Respiration and excretion rates of Pelagia noctiluca (Semaeostomeae, Scyphozoa). In Proceedings of the 21st EMBS. Polish Academy of Sciences, Institute of Oceanology, Gdansk: 107–113.

    Google Scholar 

  • Malej, A., 1991. Rates of metabolism of jellyfish as related to body weight, chemical composition and temperature UNEP: jellyfish blooms in the Mediterranean. In Proceedings of the II Workshop on Jellyfish in the Mediterranean. UNEP, Athens: 253–259.

    Google Scholar 

  • Malej, A., J. Faganeli & J. Pezdic, 1993. Stable isotope and biochemical fractionation in the marine pelagic food-chain: the jellyfish Pelagia noctiluca and net zooplankton. Marine Biology 116: 565–570.

    Article  CAS  Google Scholar 

  • Matsakis, S., 1992. Ammonia excretion rate of Clytia spp. hydromedusae (Cnidaria Thecata): effects of individual dry weight, temperature and food availability. Marine Ecology Progress Series 84: 55–63.

    Article  Google Scholar 

  • McCloskey, L. R., L. Muscatine & F. P. Wilkerson, 1994. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Marine Biology 119: 13–22.

    Article  Google Scholar 

  • Miller, C. & P. Glibert, 1998. Nitrogen excretion by the cala-noid copepod Acartia tonsa: results of mesocosm experiments. Journal of Plankton Research 20: 1767–1780.

    Article  CAS  Google Scholar 

  • Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science 52: 575–581.

    Article  Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hyd-robiologia 451: 55–68.

    Google Scholar 

  • Minor, E. C., J.-P. Simjouw & M. R. Mulholland, 2006. Seasonal variation in dissolved organic carbon concentrations and characteristics in a shallow coastal bay. Marine Chemistry 101: 166–179.

    Article  CAS  Google Scholar 

  • Miyake, H., D. J. Lindsay, M. Kitamura & S. Nishida, 2005. Occurrence of the scyphomedusa Parumbrosa polylobata Kishinouye, 1910 in Suruga Bay, Japan. Plankton Biology and Ecology 52: 58–66.

    Google Scholar 

  • Morand, P., C. Carré & D. C. Biggs, 1987. Feeding and metabolism of the jellyfish Pelagia noctiluca (scyp-homedusae, semaeostomeae). Journal of Plankton Research 9: 651–665.

    Article  Google Scholar 

  • Muscatine, L. & E. Cernichiari, 1969. Assimilation of photo-synthetic products of zooxanthellae by a reef coral. Biological Bulletin 137: 506–523.

    Article  CAS  Google Scholar 

  • Muscatine, L. & R. E. Marian, 1982. Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnology and Oceanography 27: 910–917.

    Article  CAS  Google Scholar 

  • Nemazie, D. A., J. E. Purcell & P. M. Glibert, 1993. Ammonium excretion by gelatinous zooplankton and their contribution to the ammonium requirements of microplankton in Chesapeake Bay. Marine Biology 116: 451–458.

    Article  CAS  Google Scholar 

  • Odum, H. T. & E. P. Odum, 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological Monographs 25: 291–319.

    Article  Google Scholar 

  • Pagés, F., H. E. González & S. R. González, 1996. Diet of the gelatinous zooplankton in Hardangerfjord (Norway) and potential predatory impact by Aglantha digitale (Trachymedusae). Marine Ecology Progress Series 139: 69–77.

    Article  Google Scholar 

  • Pagés, F., H. E. Gonzalez, M. Ramon, M. Sobarzo & J.-M. Gili, 2001. Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System, and potential predatory impact by Bassia bassensis (Si-phonophora: Calycophorae). Marine Ecology Progress Series 210: 13–24.

    Article  Google Scholar 

  • Peach, M. B. & K. A. Pitt, 2005. Morphology of the nemat-ocysts of the medusae of two scyphozoans Catostylus mosaicus and Phyllorhiza punctata (Rhizostomeae): implications for capture of prey. Invertebrate Biology 124: 98–108.

    Google Scholar 

  • Percy, J. A. & F. J. Fife, 1981. The biochemical composition and energy content of arctic marine macrozooplankton. Arctic 34: 307–313.

    Google Scholar 

  • Pitt, K. A. & M. J. Kingsford, 2003. Temporal variation in the virgin biomass of the edible jellyfish, Catostylus mosaicus (Scyphozoa, Rhizostomeae). Fisheries Research 63: 303–313.

    Article  Google Scholar 

  • Pitt, K. A., K. Koop & D. Rissik, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). Journal of Experimental Marine Biology and Ecology 315: 71–86.

    Article  CAS  Google Scholar 

  • Purcell, J. E., 1983. Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey. Marine Biology 73: 257–261.

    Article  CAS  Google Scholar 

  • Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates and effects on prey populations. Annales de l’Institut océanographique, Paris 73: 125–137.

    Google Scholar 

  • Purcell, J. E., 2008. Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hyd-robiologia (this volume). doi:10.1007/s10750-008-9585-8.

    Google Scholar 

  • Purcell, J. E. & P. Kremer, 1983. Feeding and metabolism of the siphonophore Sphaeronectes gracilis. Journal of Plankton Research 5: 95–106.

    Article  Google Scholar 

  • Raffealli, D. G., R. A. Raven & L. J. Poole, 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology: An Annual Review 36: 97–125.

    Google Scholar 

  • Rahav, B. O., Z. Dubinsky, Y. Achituv & P. G. Falkowski, 1989. Ammonium metabolism in the zooxanthellate coral, Stylophora pistillata. Proceedings of the Royal Society of London Series B 236: 325–337.

    Article  CAS  Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea, Vol. 2. Interscience, New York: 26–77.

    Google Scholar 

  • Reeve, M. R., M. A. Syms & P. Kremer, 1989. Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. I. Carbon biomass, feeding, egg production, growth and assimilation efficiency. Journal of Plankton Research 11: 535–552.

    Article  Google Scholar 

  • Reeve, M. R., M. A. Walter & T. Ikeda, 1978. Laboratory studies of ingestion and food utilization in lobate and tentaculate ctenophores. Limnology and Oceanography 24: 740–751.

    Article  Google Scholar 

  • Riemann, L., J. Titelman & U. Båmstedt, 2006. Links between jellyfish and microbes in a jellyfish dominated fjord. Marine Ecology Progress Series 325: 29–42.

    Article  CAS  Google Scholar 

  • Schneider, G., 1988. Chemische zusammensetzung und biomasseparameter der ohrenqualle Aurelia aurita. Helgolander Meeresuntersuchungen 42: 319–327.

    Article  Google Scholar 

  • Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, Western Baltic. Marine Biology 100: 507–514.

    Article  Google Scholar 

  • Schneider, G., 1990. A comparison of carbon based ammonia excretion rates between gelatinous and non-gelatinous zooplankton: implications and consequences. Marine Biology 106: 219–225.

    Article  CAS  Google Scholar 

  • Shanks, A. L. & W. M. Graham, 1988. Chemical defense in a scyphomedusa. Marine Ecology Progress Series 45: 81–86.

    Article  CAS  Google Scholar 

  • Shenker, J. M., 1985. Carbon content of the neritic scyphomedusa Chrysaora fuscescens. Journal of Plankton Research 7: 169–173.

    Article  Google Scholar 

  • Shimauchi, H. & S. Uye, 2007. Excretion and respiration rates of the scyphomedusa Aurelia aurita from the Inland Sea of Japan. Journal of Oceanography 63: 27–34.

    Article  Google Scholar 

  • Smith, K. L. J., 1982. Zooplankton of a bathyal benthic boundary layer: in situ rates of oxygen consumption and ammonium excretion. Limnology and Oceanography 27: 461–471.

    Article  CAS  Google Scholar 

  • Søndergaard, M. & M. Middelboe, 1995. A cross-system analysis of labile dissolved organic carbon. Marine Ecology Progress Series 118: 283–294.

    Article  Google Scholar 

  • Southwell, M. W., B. N. Popp & C. S. Martens, 2008. Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Marine Chemistry 108: 96–108.

    Article  CAS  Google Scholar 

  • Swanson, R. & O. Hoegh-Guldberg, 1998. Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Marine Biology 131: 89–93.

    Article  Google Scholar 

  • Thingstad, T. F., M. D. Krom, R. F. C. Mantoura, G. A. F. Flaten, S. Groom, B. Herut, N. Kress, C. S. Law, A. Pasternak, P. Pitta, S. Psarra, F. Rassoulzadegan, T. Tanaka, A. Tselepides, P. Wassmann, E. M. S. Woodward, C. W. Riser, G. Zodiatis & T. Zohary, 2005. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309: 1068–1071.

    Article  PubMed  CAS  Google Scholar 

  • Titelman, J., L. Riemann, T. A. Sørnes, T. Nilsen, P. Grieks-poor & U. Båmstedt, 2006. Turnover of dead jellyfish: stimulation and retardation of microbial activity. Marine Ecology Progress Series 325: 43–58.

    Article  CAS  Google Scholar 

  • Todd, B. D., D. J. Thornhill & W. K. Fitt, 2006. Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Marine Pollution Bulletin 52: 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Uye, S. & H. Shimauchi, 2005. Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland sea of Japan. Journal of Plankton Research 27: 237–248.

    Article  CAS  Google Scholar 

  • Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh & K. Foreman, 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.

    Article  Google Scholar 

  • Verde, E. A. & L. R. McCloskey, 1998. Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Marine Ecology Progress Series 168: 147–162.

    Article  Google Scholar 

  • Viaroli, P., M. Bartoli, C. Bondavalli & M. Naldi, 1995. Oxygen fluxes and dystrophy in a coastal lagoon colonized by Ulva rigida (Sacca di Goro, Po River Delta, Northern Italy). Fresenius Environmental Bulletin 4: 381–386.

    CAS  Google Scholar 

  • Wang, J.-T. & A. E. Douglas, 1998. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis. Journal of Experimental Biology 201: 2445–2453.

    PubMed  Google Scholar 

  • Webb, K. L. & R. E. Johannes, 1967. Studies of the release of dissolved free amino acids by marine zooplankton. Limnology and Oceanography 12: 376–382.

    Article  CAS  Google Scholar 

  • Weis, V. M., G. J. Smith & L. Muscatine, 1989. A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Marine Biology 100: 195–202.

    Article  CAS  Google Scholar 

  • Wells, M. L., 2002. Marine colloids and trace metals. In Hansell, D. A. & C. A. Carlson (eds), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego: 367–404.

    Chapter  Google Scholar 

  • Welsh, D. T. & G. Castadelli, 2004. Bacterial nitrification activity directly associated with isolated benthic marine animals. Marine Biology 144: 1029–1037.

    Article  CAS  Google Scholar 

  • Wilkerson, F. P. & P. Kremer, 1992. DIN, DON and PO4 flux by a medusa with algal symbionts. Marine Ecology Progress Series 90: 237–250.

    Article  CAS  Google Scholar 

  • West, E. J., D. T. Welsh & K. A. Pitt, 2008. Influence of decomposing jellyfish on sediment oxygen demand and nutrient dynamics. Hydrobiologia (this volume). doi: 10.1007/s10750-008-9586-7.

    Google Scholar 

  • Youngbluth, M. J., P. Kremer, T. G. Bailey & C. A. Jacoby, 1988. Chemical composition, metabolic rates and feeding behavior of the midwater ctenophore Bathocyroe fosteri. Marine Biology 98: 87–94.

    Article  CAS  Google Scholar 

  • Yousefian, M. & A. E. Kideys, 2003. Biochemical composition of Mnemiopsis leidyi in the southern Caspian Sea. Fish Physiology and Biochemistry 29: 127–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pitt, K.A., Welsh, D.T., Condon, R.H. (2008). Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. In: Pitt, K.A., Purcell, J.E. (eds) Jellyfish Blooms: Causes, Consequences, and Recent Advances. Developments in Hydrobiology, vol 206. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9749-2_10

Download citation

Publish with us

Policies and ethics