Skip to main content

Biogeochemistry and the Carbon Reservoir

  • Chapter
Book cover The South China Sea

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 13))

The biogeochemistry and the carbon reservoir of the South China Sea (SCS) are attractive because of two reasons. First, the monsoon-driven seasonal patterns in bioproductivity and nutrient dynamics distinguish the SCS from other low-latitude waters which, as a rule, are insensitive to seasonal cycles. Second, the enclosed nature of the SCS basin allows only limited exchanges with the open ocean and brings about specific features in its basin-wise circulation and carbon cycling. Since both monsoonal climate and basin morphology have been evolved with geological time, the SCS must have had its own history in biogeochemical evolution and carbon reservoir changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Billups K., Channell J. and Zachos J. 2002. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic. Paleoceanography 17: 1, doi: 10.1029/2000PA000568.

    Google Scholar 

  • Billups K., Pälike H., Channell J.E.T., Zachos J.C. and Shackleton N.J. 2004. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet. Sci. Lett. 224: 33–44.

    Google Scholar 

  • Berger A., Loutre M.F. and Laskar J. 1992. Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies. Science 255: 560–566.

    Google Scholar 

  • Berger W.H., Bickert T., Jansen E., Wefer G. and Yasuda M. 1993a. The central mystery of the Quaternary Ice Age. Oceanus 36: 53–56.

    Google Scholar 

  • Boyd P.W. and Newton P.P. 1999. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep-Sea Res. I 46: 63–91.

    Google Scholar 

  • Boyd, P.W., Jickells, T., Law, C.S., Blain, S., Boyle, E.A., Buesseler, K.O., Coale, K.H., Cullen, J.J., de Baar, H.J.W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N.P.J., Pollard, R., Rivkin, R.B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A.J. 2007. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 315: 612–617.

    Google Scholar 

  • Brzezinski M.A., Jones J.L., Bidle K.D. and Azam F. 2003. The balance between silica production and silica dissolution in the sea: Insights from Monterey Bay, California, applied to the global data set. Limnol. Oceanogr. 48: 1846–1854.

    Google Scholar 

  • Buesseler K.O., Lamborg C.H., Boyd P.W., Lam P.J., Trull T.W., Bidigare R.R., Bishop J.K.B., Casciotti K.L., Dehairs F., Elskens M., Honda M., Karl D.M., Siegel D.A., Silver M.W., Steinberg D.K., Valdes J., Van Mooy B. and Wilson S. 2007. Revisiting carbon flux through the ocean’s twilight zone. Science 316: 567–570.

    Google Scholar 

  • Cai, W.-J. and Dai, M. 2004. A Comment on “Enhanced open ocean storage of CO2 from shelf sea pumping.” Science 306: 1477c.

    Google Scholar 

  • Chen C.T., Wang C.H., Soong K.Y. and Wang B.J. 2001a. Water temperature records from corals near the nuclear power plant in southern Taiwan. Sci. China (D) 44(4): 356–362.

    Google Scholar 

  • Chen C.T.A., Wang S.L., Wang B.J. and Pai S.C. 2001b. Nutrient budgets for the South China Sea basin. Mar. Chem. 75: 281–300.

    Google Scholar 

  • Chen C.T.A., Hou W.P., Gamo T. and Wang S.L. 2006a. Carbonate-related parameters of subsurface waters in the West Philippine, South China and Sulu Seas. Mar. Chem. 99: 151–161.

    Google Scholar 

  • Chen C.C., Shiah F.K., Chung S.W. and Liu K.K. 2006b. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. J. Mar. Syst. 59: 97–110.

    Google Scholar 

  • Chen C.T.A., Wang S.L., Chou W.C. and Sheu D.D. 2006c. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Mar. Chem. 101: 277–305.

    Google Scholar 

  • Chen J. 2005. Biogeochemistry of Settling Particles in the South China Sea and Its Significance on Paleo-environment Studies. PhD thesis, Tongji Univ., Shanghai, 136pp.

    Google Scholar 

  • Chen J., Xu L., Zheng L., Wong H.K. and Jennerjahn T. 1998. Organic geochemical characteristics of time-series settling particulate matter in the northern South China Sea and their implications. Chinese J. Geochem. 17: 275–283.

    Google Scholar 

  • Chen J., Wiesner M.G. and Wong H.K. 1999.Vertical changes of POC flux and indicators of early diagenesis in the South China Sea. Sci. China (D) 29(2):120–128.

    Google Scholar 

  • Chen Y.L. 2005. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Res. I 52: 319–340.

    Google Scholar 

  • Chen Y.L., Chen H.Y. and Chung C.W. 2007a. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep-Sea Res. II 54: 1617–1633.

    Google Scholar 

  • Chen Y.L., Chen H.Y., Lin I.I., Lee M.A. and Chang J. 2007b. Effects of cold eddy on phytoplankton production and assemblages in Luzon Strait bordering the South China Sea. J. Oceanogr. 63: 671–683.

    Google Scholar 

  • Cheng X., Huang B., Jian Z., Zhao Q., Tian J. and Li J. 2005. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: a present-LGM comparison. Mar. Micropaleontol. 54: 125–139.

    Google Scholar 

  • Chou W.C., Sheu D.D., Lee B.S., Tseng C.M., Chen C.T.A., Wang S.L. and Wong G.T.F. 2007. Depth distributions of alkalinity, TCO2 and δ13C TCO2 at SEATS time-series site in the northern South China Sea. Deep-Sea Res. II 54: 1469–1485.

    Google Scholar 

  • Cramer B.S., Wright J.D., Kent D.V. and Aubry M.P. 2003. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n). Paleoceanography 18: doi: 10.1029/2003PA000909.

    Google Scholar 

  • Curry W.B. and Crowley T.J. 1987. The δ13C of equatorial Atlantic surface waters: Implications for ice age pCO2 levels. Paleoceanography 2: 489–517.

    Google Scholar 

  • de Baar H.J.W., Boyd P.W., Coale K.H., Landry M.R., Tsuda A., Assmy P., Bakker D.C.E., Bozec Y., Barber R.T., Brzezinski M.A., Buesseler K.O., Boye M., Croot P.L., Gervais F., Gorbunov M.Y., Harrison P.J., Hiscock W.T., Laan P., Lancelot C., Law C.S., Levasseur M., Marchetti A., Millero F.J., Nishioka J., Nojiri Y., van Oijen T., Riebesell U., Rijkenberg M.J.A., Saito H., Takeda S., Timmermans K.R., Veldhuis M.J.W., Waite A.M. and Wong C.S. 2005. Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment. J. Geophysical Res.-Oceans 110: C09S16, doi:10.1029/2004JC002601.

    Google Scholar 

  • de Garidel-Thoron T., Beaufort L., Linsley B.K. and Dannenmann S. 2001. Millennial-scale dynamics of the East-Asian winter monsoon during the last 200,000 years. Paleoceanography 16: 491–502.

    Google Scholar 

  • DeMenocal P.B. 1995. Plio-Pleistocene African climate. Science 270: 53–59.

    Google Scholar 

  • Derry L.A. and France-Lanord C. 1996. Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography 11: 267–275.

    Google Scholar 

  • Diester-Haass L., Billups K. and Emeis K.C. 2006. Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link? Paleoceanography 21: PA4216, doi:10.1029/2006PA001267.

    Google Scholar 

  • Ding Z.L., Sun J.M., Yang S.L. and Liu T.S. 1998a. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophys. Res. Lett. 25: 1225–1228.

    Google Scholar 

  • Ding Z.L., Rutter N.W., Liu T.S., Sun J.M., Ren J.Z., Rokosh D. and Xiong S.F. 1998b. Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess. Paleoclimates 2: 281–291.

    Google Scholar 

  • Duce, R.A. 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles 5: 193–259.

    Google Scholar 

  • Eppley R. and Peterson B.J. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680.

    Google Scholar 

  • Fang D., Jian Z. and Wang P. 2000. The paleoproductivity recorded in the southern Nansha sea area for about 30 ka. Chinese Sci. Bull. 45: 227–230.

    Google Scholar 

  • Farrell J.W. and Janecek T.R. 1991. Late Neogene paleoceanography and paleoclimatology of the northern Indian Ocean (Site 758). Proc. ODP Sci. Results 121: 297–355.

    Google Scholar 

  • Feely R.A., Sabine C.L., Lee K., Millero F.L., Lamb M.F., Greeley D., Bullister J.L., Key R.M., Peng T.H., Kozyr A., Ono T. and Wong C.S. 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochem. Cycles 16(4): 1144, doi:10.1029/2002GB001866.

    Google Scholar 

  • Flower B.P. and Kennett J.P. 1993. Middle Miocene ocean-climate transition: high resolution oxygen and carbon isotopic records from DSDP Site 588A, southwest Pacific. Paleoceanography 8: 811–843.

    Google Scholar 

  • Gattuso G.P., Frankignoulle M., Bourge I., Romaine S. and Buddemeier R.W. 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet. Change 18: 37–46.

    Google Scholar 

  • Gong G.C., Liu K.K. and Liu C.T. 1992a. Chemical hydrography of the South China Sea and a comparison with the West Philippine seas. Terr. Atmos. Ocean. Sci. (TAO) Taipei 3: 587–602.

    Google Scholar 

  • Gong G.C., Liu K.K., Liu C.T. and Pai S.C. 1992. The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. Terr. Atmos. Ocean. Sci. (TAO) Taipei 13: 587–602.

    Google Scholar 

  • Haake B., Ittekkot V., Rixen T., Ramaswamy V., Nair R.R. and Curry W.B. 1993. Seasonality and interannual variability of particle fluxes to the deep Arabian Sea. Deep-Sea Res. I 40: 1323–1344.

    Google Scholar 

  • Haug G.H., Sigman D.M., Tiedemann R., Pedersen T.F. and Sarnthein M. 1999. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401: 779–782.

    Google Scholar 

  • Han W. and Ma K. 1988. Carbonate compensation depth, saturation horizon and lysocline in the northeast region of South China Sea. Tropical Oceanol. 7(3): 84–89 (in Chinese).

    Google Scholar 

  • He J., Zhao M., Li L., Wang H. and Wang P. 2008. Biomarker evidence of relatively stable community structure in the northern South China Sea during the last glacial and Holocene. Terr. Atmos. Ocean. Sci. (TAO) Taipei 19(4): 377–387.

    Google Scholar 

  • Hayes J.M., Strauss H. and Kaufman A.J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161: 103–125.

    Google Scholar 

  • Hess S. and Kuhnt W. 2005. Neogene and Quaternary paleoceanographic changes in the southern South China Sea (Site 1143): the benthic foraminiferal record. Mar. Micropaleontol. 54: 63–87.

    Google Scholar 

  • Higginson M., Maxwell J.R. and Altabet M.A. 2003. Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial- and orbital-scale variability. Mar. Geol. 201: 223–250.

    Google Scholar 

  • Hillaire-Marcel C. and de Vernal A. 2007. Methods in Late Cenozoic Paleoceanography: Introduction. In: Hillaire-Marcel C. and de Vernal A. (eds.), Proxies in Late Ceanozoic Paleoceanography. Elsevier, Amsterdam, pp. 1–15.

    Google Scholar 

  • Hodell, A. D., Charles, D. C. and Ninnemann, S. U. 2000. Comparison of interglacial stages in the South Atlantic sector of the southern ocean for the past 450 kyr: implifications for Marine Isotope Stage (MIS) 11. Global and Planetary Change 24: 7–26.

    Google Scholar 

  • Holbourn A., Kuhnt W. and Schulz M. 2004. Orbitally paced climate variability during the middle Miocene: high resolution benthic stable-isotope records from the tropical western Pacific. In: Clift P.D., Wang P., Hayes D. and Kuhnt W. (eds.), Continent-Ocean Interactions in the East Asian Marginal Seas. AGU Geophys. Monogr. 149, pp. 321–337.

    Google Scholar 

  • Holbourn A., Kuhnt W., Schulz M. and Erlenkeuser H. 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438: 483–487.

    Google Scholar 

  • Honda M.C., Imai K., Nojiri Y., Hoshi F., Sugauara T. and Kusakabe M. 2002. The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997–2000). Deep-Sea Res. II 49: 5595–5625.

    Google Scholar 

  • Howell M.W., Thunell R.C., Stefano E.D., Sprovieri R., Tappa E.J. and Sakamoto T. 1998. Stable isotope chronology and paleoceanographic history of Sites 963 and 964, Eastern Mediterranean Sea. Proc. ODP Sci. Results 160: 167–180.

    Google Scholar 

  • Huang L. 1991. A preliminary study on the distribution of photosynthetic pigments and primary production in the sea area of Nansha Islands. In: Chen Q. (ed.), Collected Papers on Marine Biology Study of Nansha Islands and the Adjacent Sea Areas (II). China Ocean Press, Beijing, pp. 34–47 (in Chinese).

    Google Scholar 

  • Huang L. and Chen C. 1997. Distribution of chlorophyll a and primary productivity of Nansha Islands sea area in winter. In: Chen Q. and Huang L. (eds.), Study on Ecological Processes of Nansha Islands Sea Area (I). China Sci. Press, Beijing, pp. 1–15 (in Chinese).

    Google Scholar 

  • Huang C.Y., Liew P.M., Zhao M., Chang T.C., Kuo C.M., Chen M.T., Wang C.H. and Zhang L.F. 1997a. Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousands years. Earth Planet. Sci. Lett. 146: 59–72.

    Google Scholar 

  • Huang C.Y., Wu S.F., Zhao M., Chen M.T., Wang C.H., Tu X. and Yuan P.B. 1997b. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation. Mar. Micropaleotol. 32: 71–94.

    Google Scholar 

  • Hung T. and Tsai C.C.H. 1972. Study on photosynthetic pigments and chemical nutrients in South China Sea. Acta Oceanogr. Taiwanica 2: 83–92.

    Google Scholar 

  • Hung J.J., Wang S.M. and Chen Y.L. 2007. Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the northern South China Sea. Deep-Sea Res. II, 54: 1486–1503

    Google Scholar 

  • Jansen J.H.F., Kuijpers A. and Troelstra S.R. 1986. A Mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science 232: 619–622.

    Google Scholar 

  • Jennerjahn T.C., Liebezeit G. and Kempe S. 1992. Particle flux in the northern South China Sea. In: Jin X., Kudrass H.R. and Pautot G. (eds.), Marine Geology and Geophysics of South China Sea. China Ocean Press, Beijing, pp. 228–235.

    Google Scholar 

  • Jia G., Jian Z., Peng P., Wang P. and Fu J. 2000. Biogenic silica records in core 17962 from southern South China Sea and their relation to paleoceanographical events. Geochimica 29(3): 293–296 (in Chinese).

    Google Scholar 

  • Jia G., Peng P., Zhao Q. and Jian Z. 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geology 31: 1093–1096.

    Google Scholar 

  • Jian Z., Wang L. and Kienast K. 1999a. Late Quaternary surface paleoproductivity and variations of the East Asian Monsoon in the South China Sea. Quat. Sci. 1: 32–40 (in Chinese).

    Google Scholar 

  • Jian Z., Wang L., Kienast M., Sarnthein M., Kuhnt W., Lin H. and Wang P. 1999b. Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years. Mar. Geol. 156: 159–186.

    Google Scholar 

  • Jian Z., Cheng X., Zhao Q., Wang J. and Wang P. 2001a. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years. Sci. China (D) 44(10): 952–960.

    Google Scholar 

  • Jian Z., Huang B., Lin H. and Kuhnt W. 2001b. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quat. Res. 55: 363–370.

    Google Scholar 

  • Jian Z., Zhao Q., Cheng X., Wang J., Wang P. and Su X. 2003. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193: 425–442.

    Google Scholar 

  • Keigwin L.D. and Boyle A.E. 1985. Carbon isotopes in deep-sea benthic foraminifera: Precession and changes in low-latitude biomass. In: Sundquist E.T. and Broecker W. S. (eds.), The Carbon Cycle and Atmopspheric CO2: Natural variations Archean to Present. AGU Geophys. Monogr. vol. 32, pp. 319–389.

    Google Scholar 

  • Kienast M. 2000. Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography 15: 244–253.

    Google Scholar 

  • Kienast M., Calvert S.E., Pelejero C. and Grimalt J.O. 2001a. A critical review of marine sedimentary 13Corg-pCO2 estimates: New palaeorecords form the South China Sea and a revisit of other low-latitude 13Corg-pCO2 records. Global Biogeochem. Cycles 15: 113–127.

    Google Scholar 

  • Kienast M., Steinke S., Stattegger K. and Calvert S.E. 2001b. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291: 2132–2134.

    Google Scholar 

  • Kuhnt W., Hess S. and Jian Z. 1999. Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea. Mar. Geol. 156: 123–157.

    Google Scholar 

  • Laskar J. 1990. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus 88: 266–291.

    Google Scholar 

  • Lawrence K.T., Liu Z. and Herbert T.D. 2006. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312: 79–83.

    Google Scholar 

  • Li J., Wang R. and Li B. 2002a. Variations of opal accumulation rates and paleoproductivity over the past 12 Ma at ODP Site 1143, southern South China Sea. Chinese Sci. Bull. 47: 596–598.

    Google Scholar 

  • Li J., Jin X. and Gao J. 2002b. Morpho-tectonic study on late-stage spreading of the Eastern Subbasin of South China Sea. Sci. China (D) 45: 978–989.

    Google Scholar 

  • Li J. and Wang P. 2006. A 200-ka carbon isotope record from the South China Sea. Chinese Sci. Bull. 51(14): 1780–1784.

    Google Scholar 

  • Lin A.T., Watts A.B. and Hesselbo S.P. 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Chinese Taipei region. Basin Res. 15: 453–479.

    Google Scholar 

  • Lin I.I., Liu W.T., Wu C.-C., Wong G.T.F., Hu C., Chen Z., Liang W.-D., Yang Y. and Liu K.K. 2003. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 30: 1718, doi:10.1029/2003GL017141.

    Google Scholar 

  • Lin H., Lai C., Ting H., Wang L., Sarnthein M. and Huang J. 1999a. Late Pleistocene nutrients and sea surface productivity in the South China Sea: a record of teleconnections with northern hemisphere events. Mar. Geol. 156: 197–210.

    Google Scholar 

  • Lin H.L., Wang L.W., Chung-Ho Wang C.H. and Gong G.C. 1999b. Vertical distribution of δ13C of dissolved inorganic carbon in the northeastern South China Sea. Deep-Sea Res. I 46: 757–775.

    Google Scholar 

  • Lin H.-L., Wang W.-C. and Hung G.-W. 2004. Seasonal variations of planktonic foraminiferal isotopic composition from sediment traps in the South China Sea. Mar. Micropaleontol. 53: 447–460.

    Google Scholar 

  • Lin I.-I., Chen J.-P., Wong G.T.F., Huang C.-W. and Lien C.-C. 2007. Aerosol input to the South China Sea: results from the Moderate resolution imaging spectro-radiometer, the quick scatterometer, and the measurements of pollution in the troposphere sensor. Deep-Sea Res. II 54: 1589–1601.

    Google Scholar 

  • Liu, C. and Cheng, X. 2001. Variations in upper ocean structure for the last 2 Ma of the Nansha area by means of calcareous nannofossils. Sci. China (D) 44: 905–911.

    Google Scholar 

  • Liu K.-K., Chao S.-Y., Shaw P.-T., Gong G.-C., Chen C.-C. and Tang T.Y. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Res. I 49: 1387–1412.

    Google Scholar 

  • Liu K.-K., Chen Y.-J., Tseng C.-M., Lin I.-I., Liu H.-B. and Snidvongs A. 2007. The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: observations and numerical investigations. Deep-Sea Res. II 54: 1546–1574.

    Google Scholar 

  • Lourens L.J. 1994. Astronomical forcing of Mediterranean climate during the last 5.3 million years. PhD thesis, Utrecht University, Netherlands, 247pp.

    Google Scholar 

  • Lourens, L.J., Antonarakou, A., Hilgen, F.J., Van Hoof, A., Vergnaud-Grazzini, C. and Zachariasse, W.J. 1996. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11: 391–413.

    Google Scholar 

  • Mackensen A. and Bickert T. 1999. Stable carbon isotopes in benthic foraminifera: Proxies for deep and bottom water circulation and new production. In: Fischer G. and Wefer G. (eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer, The Netherlands, pp. 229–254.

    Google Scholar 

  • Mix A.C., Le J. and Shackleton N.J. 1995. Benthic foraminiferal stable isotope stratigraphy of Site 846: 0–1.8 Ma. Proc. ODP Sci. Results 138: 839–854.

    Google Scholar 

  • Nelson D.M., Tregure P., Brezinski M.A., Leynaert, A. and Quéguiner, B. 1995. Production and dissolution of biogenic silica in the ocean: regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles 9: 359–372.

    Google Scholar 

  • Ning X., Chai F., Xue H., Chai Y., Liu C. and Shi J. 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res. 109: C10005, doi:10.1029/2004JC002365.

    Google Scholar 

  • Ninnemann U.S. and Charles C.D. 1997. Regional differences in Quaternary Subantarctic nutrient cycling: Link to intermediate and deep water ventilation. Paleoceanography 12: 560–567.

    Google Scholar 

  • Olsen P.E. 1986. A 40 million-year lake record of early Mesozoic climatic forcing. Science 234: 842–848.

    Google Scholar 

  • Paul H.A., Zachos J.C., Flower B.P. and Tripati A. 2000. Orbitally induced climate and geochemical variability across the Oligocene/Miocene boundary. Paleoceanography 15: 71–485.

    Google Scholar 

  • Pälike H., Norris R.D., Herrle J.O., Wilson P.A., Coxall H.K., Lear C.H., Shackleton N.J., Tripati A.K. and Wade B.S. 2006. The heartbeat of the Oligocene climate system. Science 314: 1894–1898.

    Google Scholar 

  • Pelejero C., Grimalt J.O., Heilig S., Kienast M. and Wang L. 1999a. High-resolution U37K' temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanography 14: 224–231.

    Google Scholar 

  • Pelejero C., Grimalt J.O., Sarnthein M., Wang L. and Flores J.A. 1999b. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. Mar. Geol. 156: 109–121.

    Google Scholar 

  • Pelejero C., Kienast M., Wang L. and Grimalt J.O. 1999c. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea. Earth Planet. Sci. Lett. 171: 661–671.

    Google Scholar 

  • Porter S.C. and An Z. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375: 305–308.

    Google Scholar 

  • Ragueneau O., Treguer P., Leynaert A., Anderson R.F., Brzezinski M.A., DeMaster D.J., Dugdale R.C., Dymond J., Fischer G., François R., Heinze C., Maier-Reimer E., Martin-Jézéquel V., Nelson D. M. and Quéguiner B. 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet. Change 26: 317–365.

    Google Scholar 

  • Richardson T.L. and Jackson G.A. 2007. Small phytoplankton and carbon export from the surface ocean. Science 315: 838–840.

    Google Scholar 

  • Roth J.M., Droxler A.W. and Kameo K. 2000. The Caribbean carbonate crash at the middle to late Miocene transition: linkage to the establishment of the modern global ocean conveyor. Proc. ODP Sci. Results 165: 249–273.

    Google Scholar 

  • Schmidt H., Berger W.H., Bickert T. and Wefer G. 1993. Quaternary carbon isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau. Proc. ODP Sci. Res. 130: 397–409.

    Google Scholar 

  • Schmieder F., von Dobeneck T. and Bleil U. 2000. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interimstate and terminal event. Earth Planet. Sci. Lett. 179: 539–549.

    Google Scholar 

  • Shackleton N.J. 1985. Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere. AGU Geophys. Monogr. 32: 412–418.

    Google Scholar 

  • Shackleton, N.J., Berger, A. and Peltier, W.R. 1990. An alternative calibration of the lower Pleistocene timescale based on W. R. ODP site 677. Trans. R. Soc. Edinburgh Earth Sci. 81: 251–261.

    Google Scholar 

  • Shackleton N.J., Hall M.A. and Pate D. 1995. Pliocene stable isotope stratigraphy of Site 846. Proc. ODP Sci. Results 138: 337–355.

    Google Scholar 

  • Shaw P.T. 1989. The intrusion of water massers into the sea southwest of Taiwan. J. Geophys. Res. 94: 18213–18226.

    Google Scholar 

  • Shiau L.J., Yu P.S., Wei K.Y., Yamamoto M., Lee T.Q., Yu E.F., Fang T.H. and Chen M.T. 2008. Sea surface temperature, productivity, and terrestrial flux variations of the southeastern South China Sea over the past 800000 years (IMAGES MD972142). Terr. Atmos. Ocean. Sci. (TAO) Taipei 19(4): 363–376.

    Google Scholar 

  • Spero H.J. and Lea D.W. 2002. The cause of carbon isotope minimum events on glacial terminations. Science 296: 522–525.

    Google Scholar 

  • Su J., Xu J., Cai S. and Wang O. 1999. Circulation and eddies of the South China Sea. In: Ding Y. and Li C. (eds.), The Eruption and Evolution of Monsoon and its Interaction with Oceans in the South China Sea. Meteorol. Press, Beijing, pp. 66–72.

    Google Scholar 

  • Sun X. and Li X. 1999. A pollen record of the last 37 ka in deep sea core 17940 from the northern South China Sea. Mar. Geol. 156: 227–244.

    Google Scholar 

  • Takahashi M. and Hori T. 1984. Abundance of picophytoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Mar. Biol. 79: 177–186.

    Google Scholar 

  • Tian J., Wang P., Cheng X. and Li Q. 2002. Astronomically tuned Plio-Pleistocene benthic δ18O records from South China Sea and Atlantic-Pacific comparison. Earth Planet. Sci. Lett. 203: 1015–1029.

    Google Scholar 

  • Tian J., Wang P. and Cheng X. 2004d. Development of the East Asian monsoon and Northern Hemisphere glaciation: Oxygen isotope records from the South China Sea. Quat. Sci. Rev. 23: 2007–2016.

    Google Scholar 

  • Thomas, H., Bozec, Y., Elkalay, K., and de Baar, H. J. W. 2004. Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping. Science 304: 1005–1008.

    Google Scholar 

  • Thunell R., Miao Q., Calvert S., Calvert S. and Pedersen T. 1992. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: productivity variations and surface water pCO2. Paleoceanography 7: 143–162.

    Google Scholar 

  • Tiedemann R., Sarnthein M. and Shackleton N.J. 1994. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records from Ocean Drilling Program Site 659. Paleoceanography 9: 619–638.

    Google Scholar 

  • Tseng C.M., Wong G.T.F., Chou W.C., Lee B.S., Sheu D.D. and Liu K.K. 2007. Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep-Sea Res. II 54: 1448–1468

    Google Scholar 

  • Vincent E. and Berger W.H. 1985. Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis. Geophys. Monogr. 32: 455–468.

    Google Scholar 

  • Wade B.S and Pälike H. 2004. Oligocene climate dynamics. Paleoceanography 19: PA4019, doi:10.1029/2004PA001042.

    Google Scholar 

  • Wang L. and Wang P. 1990. Late Quaternary paleoceano-graphy of the South China Sea: glacial-interglacial contrasts in an enclosed basin. Paleoceanography 5: 77–90.

    Google Scholar 

  • Wang P., Jian Z., Zhao Q., Li Q., Wang R., Liu Z., Wu G., Shao L., Wang J., Huang B., Fang D., Tian J., Li J., Li X., Wei G., Sun X., Luo Y., Su X., Mao S. and Chen M. 2003a. Evolution of the South China Sea and monsoon history revealed in deep-sea records. Chinese Sci. Bull. 48(23): 2549–2561.

    Google Scholar 

  • Wang P., Tian J., Cheng X., Liu C. and Xu J. 2003b. Exploring cyclic changes of the ocean carbon reservoir. Chinese Sci. Bull. 48(23): 2536–2548.

    Google Scholar 

  • Wang P., Tian J., Cheng X., Liu C. and Xu J. 2003c. Carbon reservoir change preceded major ice-sheets expansion at Mid-Brunhes Event. Geology 31: 239–242.

    Google Scholar 

  • Wang P., Tian J., Cheng X., Liu C. and Xu J. 2004. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography 19: doi: 10.1029/2003PA000991.

    Google Scholar 

  • Wang R. and Li J. 2003. Quaternary high resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea. Chinese Sci. Bull. 48(4): 363–367.

    Google Scholar 

  • Wang R., Fang D., Shao L., Chen M., Xia P. and Qi J. 2001. Oligocene biogenetic siliceous deposits on the slope of the northern South China Sea. Sci. China (D) 44(10): 912–918.

    Google Scholar 

  • Wang R., Clemens S., Huang B. and Chen M. 2003. Late Quaternary paleoceanographic changes in the northern South China Sea (ODP Site 1146): radiolarian evidence. J. Quat. Sci. 18(8): 745–756.

    Google Scholar 

  • Wang R., Li J. and Li B. 2004. Data report: Late Miocene–Quaternary biogenic opal accumulation at ODP Site 1143, southern South China Sea. In: Prell W.L., Wang P., Blum P., Rea D.K. and Clemens S.C. (eds.), Proc. ODP, Sci. Results 184 [Online].

    Google Scholar 

  • Wang R., Jian Z., Xiao W., Tian J., Li J., Chen R., Zheng L. and Chen J. 2007. Quaternary biogenic opal records in the South China Sea: linkages to East Asian monsoon, global ice volume and orbital forcing. Sci. China (D) 50(5): 710–724.

    Google Scholar 

  • Wefer G., Berger W.H., Bijma J. and Fischer G. 1999. Clues to ocean history: a brief overview of proxies. In: Fischer G. and Wefer G. (eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer-Verlag, Berlin Heidelberg, pp. 1–68.

    Google Scholar 

  • Wei G., Liu Y., Li X., Shao L. and Liang X. 2003. Climatic impact on Al, K, Sc and Ti in marine sediments: Evidence from ODP Site 1144, South China Sea. Geochem. J. 37: 593–602.

    Google Scholar 

  • Werne J.P., Hollander D.J., Lyons T.W. and Peterson L.C. 2000. Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela. Paleoceanography 15: 19–29.

    Google Scholar 

  • Wong G.T.F., Ku T.L., Mulholland M., Tseng C.M. and Wang D.P. 2007a. The South East Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea-An overview. Deep-Sea Res. II 54: 1434–1447.

    Google Scholar 

  • Wong G.T.F., Tseng C.M., Wen L.S. and Chung S.W. 2007b. Nutrient dynamics and nitrate anomaly at the SEATS station. Deep-Sea Res. II 54: 1528–1545.

    Google Scholar 

  • Woodruff F. and Savin S.M. 1991. Mid-Miocene isotope stratigraphy in the deep sea: high-resolution correlations, paleoclimatic cycles and sediment preservation. Paleoceanography 6: 755–806.

    Google Scholar 

  • Wu, J.F., Chung, S.W., Wen, L.S., Liu, K.K., Chen, Y.L., Chen, H.Y. and Karl, D.M. 2003. Dissolved inorgonic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochem. Cycles 17: 1008, doi:10.1029/2002GB001924.

    Google Scholar 

  • Wu G., Qin J. and Mao S. 2003. Deep-water Oligocene pollen record from South China Sea. Chinese Sci. Bull. 48(22): 2511–2515.

    Google Scholar 

  • Wu C.R. and Chiang, T.L. 2007. Mesoscale eddies in the northern South China Sea. Deep-Sea Res. II 54: 1575–1588.

    Google Scholar 

  • Zachos J., Pagani M., Sloan L., Thomas E. and Billups K. 2001a. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.

    Google Scholar 

  • Zachos J.C., Shackleton N.J., Revenaugh J.S., Pälike H., Flower B.P. 2001b. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 292: 274–278.

    Google Scholar 

  • Zhao M., Huang C.Y., Wang C.C. and Wei G. 2006. A millennial-scale U37K' sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: Monsoon and sea-level influence. Paleogeogr. Paleoclimat. Paleoecol. 236: 39–55.

    Google Scholar 

  • Zhao Q., Jian Z., Wang J., Cheng X., Huang B., Xu J., Zhou Z., Fang D. and Wang P. 2001a. Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea. Sci. China (D) 44(10): 934–942.

    Google Scholar 

  • Zhao Q., Wang P., Cheng X., Wang J., Huang B., Xu J., Zhou Z. and Jian Z. 2001b. A record of Miocene carbon excursions in the South China Sea. Sci. China (D) 44: 943–951.

    Google Scholar 

  • Zheng Z. and Lei Z.Q. 1999. A 400,000 year record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145: 339–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhao, M., Wang, P., Tian, J., Li, J. (2009). Biogeochemistry and the Carbon Reservoir. In: Wang, P., Li, Q. (eds) The South China Sea. Developments in Paleoenvironmental Research, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9745-4_7

Download citation

Publish with us

Policies and ethics