Skip to main content

Extrapolative procedures in modelling and simulations: the role of instabilities

  • Chapter
Scientific Modeling and Simulations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 68))

  • 2534 Accesses

Abstract

In modelling and simulations there is a risk that one extrapolates into a region where the model is not valid. In this context instabilities are of particular interest, since they can arise without any precursors. This paper discusses instabilities encountered in the field of materials science, with emphasis on effects related to the vibrations of atoms. Examples deal with, i.a., common lattice structures being either metastable or mechanically unstable, negative elastic constants that imply an instability, unexpected variations in the composition dependence of elastic constants in alloys, and mechanisms governing the ultimate strength of perfect crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kamerlingh Onnes, H.: Further experiments with liquid helium. On the change of the electrical resistance of pure metal at very low temperature. Leiden Commun. 122b, (1911)

    Google Scholar 

  2. Barnard B., Caplin A.D.: ‘Simple’ behaviour of the low temperature electrical resistivity of silver?. Commun. Phys. 2, 223–227 (1977)

    Google Scholar 

  3. Petit A.T., Dulong P.L.: Sur quelques points importans de la theorie de la chaleur. Ann. Chim. Phys. 10, 395–413 (1819)

    Google Scholar 

  4. Barin, I.: Thermochemical Data of Pure Substances. VCH Verlag (1989)

    Google Scholar 

  5. Einstein A.: Planck’s theory of radiation and the theory of specific heat. Ann. Physik 22, 180–190 (1906)

    Article  ADS  Google Scholar 

  6. Bragg W.H., Bragg W.L.: Structure of diamond. Nature (UK) 91, 557 (1913)

    Article  ADS  Google Scholar 

  7. Bragg W.L.: Structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. A, Math. Phys. Sci. 89, 248–277 (1913)

    Article  ADS  Google Scholar 

  8. Skriver H.L.: Crystal structure from one-electron theory. Phys. Rev. B 31, 1909–1923 (1985)

    Article  ADS  Google Scholar 

  9. Grimvall G.: Reconciling ab initio and semiempirical approaches to lattice stabilities. Ber. Bunsenges. Phys. Chem. 102, 1083–1087 (1998)

    Google Scholar 

  10. Born M.: On the stability of crystal lattices. I. Proc. Camb. Philos. Soc. 36, 160–172 (1940)

    Article  MathSciNet  Google Scholar 

  11. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press (1954)

    Google Scholar 

  12. Souvatzis, P., Eriksson, O., Katsnelson, M.I., Rudin, S.P.: Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 09590/1–4 (2008)

    Google Scholar 

  13. Born M.: Thermodynamics of crystals and melting. J. Chem. Phys. 7, 591–603 (1939)

    Article  ADS  Google Scholar 

  14. Brillouin L.: On thermal dependence of elasticity in solids. Phys. Rev. 54, 916–917 (1938)

    Article  MATH  ADS  Google Scholar 

  15. Vold C.L., Glicksman M.E., Kammer E.W., Cardinal L.C.: The elastic constants for single-crystal lead and indium from room temperature to the melting point. J. Phys. Chem. Solids 38, 157–160 (1977)

    Article  ADS  Google Scholar 

  16. Every, A.G., McCurdy, A.K.: Second and higher order elastic constants. In: Nelson, D.F. (ed.) Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series III/29a. Springer-Verlag (1992)

    Google Scholar 

  17. Magyari-Köpe, B., Grimvall. G., Vitos, L.: Elastic anomalies in Ag-Zn alloys. Phys. Rev. B 66, 064210/1–7 (2002)

    Google Scholar 

  18. Mei Q.S., Lu K.: Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007)

    Article  Google Scholar 

  19. Wang J., Li J., Yip S., Wolf D., Phillpot S.: Unifying two criteria of Born: elastic instability and melting of homogeneous crystals. Physica A 240, 396–403 (1997)

    Article  ADS  Google Scholar 

  20. Herzfeld K.F., Goeppert Mayer M.: On the theory of fusion. Phys. Rev. 46, 995–1001 (1934)

    Article  ADS  Google Scholar 

  21. Lindemann F.A.: Molecular frequencies. Phys. Zeits. 11, 609–612 (1910)

    Google Scholar 

  22. Gilvarry J.J.: The Lindemann and Grüneisen laws. Phys. Rev. 102, 308–316 (1956)

    Article  ADS  Google Scholar 

  23. Lennard-Jones J.E., Devonshire A.F.: Critical and co-operative phenomena IV. A theory of disorder in solids and liquids and the process of melting. Proc. R. Soc. Lond. A 170, 464–484 (1939)

    Article  MATH  ADS  Google Scholar 

  24. Bragg W.L., Williams E.J.: Effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. A 145, 699–730 (1934)

    Article  ADS  Google Scholar 

  25. Mizushima S.: Dislocation model of liquid structure. J. Phys. Soc. Jpn. 15, 70–77 (1960)

    Article  ADS  Google Scholar 

  26. Kuhlmann-Wilsdorf D.: Theory of melting. Phys. Rev. 140, A1599–A1610 (1965)

    Article  ADS  Google Scholar 

  27. Gómez, L., Dobry, A., Geuting, Ch., Diep, H.T., Burakovsky, L.: Dislocation lines as the precursor of the melting of crystalline solids observed in Monte Carlo simulations. Phys. Rev. Lett. 90, 095701/1–4 (2003)

    Google Scholar 

  28. Forsblom M., Sandberg N., Grimvall G.: Vibrational entropy of dislocations in Al. Philos. Mag. 84, 521–532 (2004)

    Article  ADS  Google Scholar 

  29. Gorecki T.: Vacancies and changes of physical properties of metals at the melting point. Z. Metall- kd. 65, 426–431 (1974)

    Google Scholar 

  30. Jin Z.H., Lu K.: Melting of surface-free bulk single crystals. Philos. Mag. Lett. 78, 29–35 (1998)

    Article  Google Scholar 

  31. Jin, Z.H., Gumbsch, P., Lu, K., Ma, E.: Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87, 055703/1–4 (2001)

    Google Scholar 

  32. Sorkin, V., Polturak, E., Adler, J.: Molecular dynamics study of melting of the bcc metal vanadium. 1. Mechanical melting. Phys. Rev. B 68, 174102/1–7 (2003)

    Google Scholar 

  33. Forsblom M., Grimvall G.: How superheated crystals melt. Nat. Mater. 4, 388–390 (2005)

    Article  ADS  Google Scholar 

  34. Forsblom, M., Grimvall, G.: Homogeneous melting of superheated crystals: molecular dynamics simulations. Phys. Rev. B 72, 054107/1–10 (2005)

    Google Scholar 

  35. Fecht H.J., Johnson W.L.: Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 334, 50–51 (1988)

    Article  ADS  Google Scholar 

  36. Forsblom, M., Sandberg, N., Grimvall, G.: Anharmonic effects in the heat capacity of Al. Phys. Rev. B 69, 165106/1–6 (2004)

    Google Scholar 

  37. Tallon J.L.: A hierarchy of catastrophes as a succession of stability limits for the crystalline state. Nature 342, 658–660 (1989)

    Article  ADS  Google Scholar 

  38. Cotterill R.M.J., Jensen E.J., Kristensen W.D.: A molecular dynamics study of the melting of a three-dimensional crystal. Phys. Lett. 44A, 127–128 (1973)

    ADS  Google Scholar 

  39. Clatterbuck, D.M., Krenn, C.R., Cohen, M.L., Morris, J.W., Jr.: Phonon instabilities and the ideal strength of aluminum. Phys. Rev. Lett. 91, 135501/1–4 (2003)

    Google Scholar 

  40. Šob M., Pokluda J., Černý M., Šandera P., Vitek V.: Theoretical strength of metals and intermetallics from first principles. Mater. Sci. Forum 482, 33–38 (2005)

    Article  Google Scholar 

  41. Luo, W., Roundy, D., Cohen, M.L., Morris, J.W., Jr.: Ideal strength of bcc molybdenum and niobium. Phys. Rev. B 66, 094110/1–7 (2002)

    Google Scholar 

  42. Born M., von Kármán Th.: Über Schwingungen in Raumgittern. Physik. Zeits. 13, 297–309 (1912)

    Google Scholar 

  43. Florencio J. Jr, Lee M.H.: Exact time evolution of a classical harmonic-oscillator chain. Phys. Rev. A 31, 3231–3236 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  44. Bardeen J., Cooper L.N., Schrieffer J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Van Vliet, K.J., Li, J., Zhu, T., Yip, S., Suresh, S.: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67, 104105/1–15 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Grimvall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grimvall, G. (2008). Extrapolative procedures in modelling and simulations: the role of instabilities. In: Yip, S., de la Rubia, T.D. (eds) Scientific Modeling and Simulations. Lecture Notes in Computational Science and Engineering, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9741-6_3

Download citation

Publish with us

Policies and ethics