Skip to main content

Enveloped viruses understood via multiscale simulation: computer-aided vaccine design

  • Chapter
Scientific Modeling and Simulations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 68))

Abstract

Enveloped viruses are viewed as an opportunity to understand how highly organized and functional biosystems can emerge from a collection of millions of chaotically moving atoms. They are an intermediate level of complexity between macromolecules and bacteria. They are a natural system for testing theories of self-assembly and structural transitions, and for demonstrating the derivation of principles of microbiology from laws of molecular physics. As some constitute threats to human health, a computer-aided vaccine and drug design strategy that would follow from a quantitative model would be an important contribution. However, current molecular dynamics simulation approaches are not practical for modeling such systems. Our multiscale approach simultaneously accounts for the outer protein net and inner protein/genomic core, and their less structured membranous material and host fluid. It follows from a rigorous multiscale deductive analysis of laws of molecular physics. Two types of order parameters are introduced: (1) those for structures wherein constituent molecules retain long-lived connectivity (they specify the nanoscale structure as a deformation from a reference configuration) and (2) those for which there is no connectivity but organization is maintained on the average (they are field variables such as mass density or measures of preferred orientation). Rigorous multiscale techniques are used to derive equations for the order parameters dynamics. The equations account for thermal-average forces, diffusion coefficients, and effects of random forces. Statistical properties of the atomic-scale fluctuations and the order parameters are co-evolved. By combining rigorous multiscale techniques and modern supercomputing, systems of extreme complexity can be modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  2. Sanbonmatsu K.Y., Tung C.S.: High performance computing in biology: multimillion atom simulations of nanoscale systems. J. Struct. Biol. 157, 470–480 (2007)

    Article  Google Scholar 

  3. Stewart G.T.: Liquid crystals in biology. I. Historical, biological and medical aspects. Liquid. Cryst. 30, 541–557 (2003)

    Article  Google Scholar 

  4. Zhang Y., Kostyuchenko V.A., Rossman M.G.: Structural analysis of viral nucleocapsids by subtraction of partial projections. J. Struct. Biol. 157, 356–364 (2007)

    Article  Google Scholar 

  5. Zhang Y., Zhang W., Ogata S., Clements D., Strauss J.H., Baker T.S., Kuhn R.J., Rossmann M.G.: Conformational changes of the flavivirus E glycoprotein. Structure 12, 1607–1618 (2004)

    Article  Google Scholar 

  6. Zhang Y., Corver J., Chipman P.R., Zhang W., Pletnev S.V., Sedlak D., Baker T.S., Strauss J.H., Kuhn R.J., Rossman M.G.: Structures of immature flavivirus particles. EMBO J. 22, 2604–2613 (2003)

    Article  Google Scholar 

  7. Klasse P.J., Bron R., Marsh M.: Mechanisms of enveloped virus entry into animal cells. Adv. Drug. Deliv. Rev. 34, 65–91 (1998)

    Article  Google Scholar 

  8. Chandrasekhar S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bose S., Ortoleva P.: Reacting hard sphere dynamics: Liouville equation for condensed media. J. Chem. Phys. 70, 3041–3056 (1979)

    Article  ADS  Google Scholar 

  10. Bose S., Ortoleva P.: A hard sphere model of chemical reaction in condensed media. Phys. Lett. A 69, 367–369 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bose S., Bose S., Ortoleva P.: Dynamic Padé approximants for chemical center waves. J. Chem. Phys. 72, 4258–4263 (1980)

    Article  ADS  Google Scholar 

  12. Bose S., Medina-Noyola M., Ortoleva P.: Third body effects on reactions in liquids. J. Chem. Phys. 75, 1762–1771 (1981)

    Article  ADS  Google Scholar 

  13. Deutch J.M., Oppenheim I.: The concept of Brownian motion in modern statistical mechanics. Faraday Discuss. Chem. Soc. 83, 1–20 (1987)

    Article  Google Scholar 

  14. Shea J.E., Oppenheim I.: Fokker-Planck equation and Langevin equation for one Brownian particle in a nonequilibrium bath. J. Phys. Chem. 100, 19035–19042 (1996)

    Article  Google Scholar 

  15. Shea J.E., Oppenheim I.: Fokker-Planck equation and non-linear hydrodynamic equations of a system of several Brownian particles in a non-equilibrium bath. Phys. A 247, 417–443 (1997)

    Article  Google Scholar 

  16. Peters M.H.: Fokker-Planck equation and the grand molecular friction tensor for combined translational and rotational motions of structured Brownian particles near structures surface. J. Chem. Phys. 110, 528–538 (1998)

    Article  ADS  Google Scholar 

  17. Peters M.H.: Fokker-Planck equation, molecular friction, and molecular dynamics for Brownian particle transport near external solid surfaces. J. Stat. Phys. 94, 557–586 (1999)

    Article  MATH  Google Scholar 

  18. Coffey W.T., Kalmykov Y.P., Waldron J.T.: The Langevin Equation with Applications to Stochastic Problems in Physics Chemistry and Electrical Engineering. World Scientific Publishing Co, River Edge (2004)

    Book  MATH  Google Scholar 

  19. Ortoleva P.: Nanoparticle dynamics: a multiscale analysis of the Liouville equation. J. Phys. Chem. 109, 21258–21266 (2005)

    Google Scholar 

  20. Miao Y., Ortoleva P.: All-atom multiscaling and new ensembles for dynamical nanoparticles. J. Chem. Phys. 125, 044901 (2006)

    Article  ADS  Google Scholar 

  21. Miao Y., Ortoleva P.: Viral structural transitions: an all-atom multiscale theory. J. Chem. Phys. 125, 214901 (2006)

    Article  ADS  Google Scholar 

  22. Shreif Z., Ortoleva P.: Curvilinear all-atom multiscale (CAM) theory of macromolecular dynamics. J. Stat. Phys. 130, 669–685 (2008)

    Article  MATH  ADS  Google Scholar 

  23. Miao, Y., Ortoleva, P.: Molecular dynamics/OP eXtrapolation (MD/OPX) for bionanosystem simulations. J. Comput. Chem. (2008). doi:10.1002/jcc.21071

  24. Pankavich S., Miao Y., Ortoleva J, Shreif Z., Ortoleva P.: Stochastic dynamics of bionanosystems: multiscale analysis and specialized ensembles. J. Chem. Phys. 128, 234908 (2008)

    Article  ADS  Google Scholar 

  25. Pankavich S., Shreif Z., Ortoleva P.: Multiscaling for classical nanosystems: derivation of Smoluchowski and Fokker-Planck equations. Phys. A 387, 4053–4069 (2008)

    Article  MathSciNet  Google Scholar 

  26. Shreif, Z., Ortoleva, P.: Multiscale derivation of an augmented Smoluchowski. Phys. A (2008, accepted)

    Google Scholar 

  27. Shreif, Z., Ortoleva, P.: Computer-aided design of nanocapsules for therapeutic delivery. Comput. Math. Methods Med. (2008, to appear)

    Google Scholar 

  28. Pankavich, S., Shreif, Z., Miao, Y., Ortoleva, P.: Self-assembly of nanocomponents into composite structures: derivation and simulation of Langevin equation. J. Chem. Phys. (2008, accepted)

    Google Scholar 

  29. Pankavich, S., Ortoleva, P.: Self-assembly of nanocomponents into composite structures: multiscale derivation of stochastic chemical kinetic models. ACS Nano (2008, in preparation)

    Google Scholar 

  30. Pankavich, S., Ortoleva, P.: Multiscaling for systems with a broad continuum of characteristic lengths and times: structural transitions in nanocomposites. (2008, in preparation)

    Google Scholar 

  31. Shreif, Z.,Ortoleva, P.: All-atom/continuum multiscale theory: application to nanocapsule therapeutic delivery. Multiscale Model. Simul. (2008, submitted)

    Google Scholar 

  32. Jaqaman K., Ortoleva P.: New space warping method for the simulation of large-scale macromolecular conformational changes. J. Comput. Chem. 23, 484–491 (2002)

    Article  Google Scholar 

  33. Freddolino P.L., Arkhipov A.S., Larson S.B., McPherson A., Schulten K.: Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ortoleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shreif, Z., Adhangale, P., Cheluvaraja, S., Perera, R., Kuhn, R., Ortoleva, P. (2008). Enveloped viruses understood via multiscale simulation: computer-aided vaccine design. In: Yip, S., de la Rubia, T.D. (eds) Scientific Modeling and Simulations. Lecture Notes in Computational Science and Engineering, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9741-6_19

Download citation

Publish with us

Policies and ethics