Skip to main content

Calculations of free energy barriers for local mechanisms of hydrogen diffusion in alanates

  • Chapter
Scientific Modeling and Simulations

Abstract

Brute force histogram calculation and a recently developed method to efficiently reconstruct the free energy profile of complex systems (the single-sweep method) are combined with ab initio molecular dynamics to study possible local mechanisms for the diffusion of hydrogen in sodium alanates. These compounds may help to understand key properties of solid state hydrogen storage materials. In this work, the identity of a mobile species observed in experiments characterizing the first dissociation reaction of sodium alanates is investigated. The activation barrier of two suggested processes for hydrogen diffusion in Na3AlH6 is evaluated and, by comparing our results with available experimental information, we are able to discriminate among them and to show that one is compatible with the observed signal while the other is not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogdanovi B., Schwickardi M.: Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 1, 253–254 (1997)

    Google Scholar 

  2. Peles A., Alford J.A., Ma Z., Yang L., Chou M.Y.: First-principles study of NaAlH4 and Na3AlH6 complex hydrides. Phys. Rev. B 70, 165105–165112 (2004)

    Article  ADS  Google Scholar 

  3. Li S., Jena P., Ahuja R.: Effect of Ti and metal vacancies on the electronic structure, stability, and dehydrogenation of Na3AlH6: supercell band-structure formalism and gradient-corrected density-functional theory. Phys. Rev. B 73, 214107–214114 (2006)

    Article  ADS  Google Scholar 

  4. Kiran B., Kandalam A.K., Jena P.: Hydrogen storage and the 18-electron rule. J. Chem. Phys. 124, 224703–224706 (2006)

    Article  ADS  Google Scholar 

  5. Kiran B., Jena P., Li X., Grubisic A., Stokes S.T., Gantefor G.F., Bowen K.H., Burgert R., Schnockel H.: Magic rule for Al n H m magic clusters. Phys. Rev. Lett. 98, 256802–256804 (2007)

    Article  ADS  Google Scholar 

  6. Ke X., Tanaka I.: Decomposition reactions for NaAlH4 and Na3AlH6, and NaH: first-principles study. Phys. Rev. B 71, 024117–024133 (2005)

    Article  ADS  Google Scholar 

  7. Araujo C.M., Li S., Ahuja R., Jena P.: Vacancy-mediated hydrogen desorption in NaAlH4. Phys. Rev. B 72, 165101–165107 (2005)

    Article  ADS  Google Scholar 

  8. Voss J., Shi Q., Jacobsen H.S., Zamponi M., Lefmann K., Vegge T.: Hydrogen dynamics in Na3AlH6: a combined density functional theory and quasielastic neutron scattering study. J. Phys. Chem. B 111, 3886–3892 (2007)

    Article  Google Scholar 

  9. Palumbo O., Cantelli R., Paolone A., Jensen C.M., Srinivasan S.S.: Point defect dynamics and evolution of chemical reactions in alanates by anelastic spectroscopy. J. Phys. Chem. B 109, 1168–1173 (2005)

    Article  Google Scholar 

  10. Palumbo O., Paolone A., Cantelli R., Jensen C.M., Sulic M.: Fast H-vacancy dynamics during alanate decomposition by anelastic spectroscopy. Proposition of a model for Ti-enhanced hydrogen transport. J. Phys. Chem. B 110, 9105–9111 (2006)

    Article  Google Scholar 

  11. Mills G., Jonsson H.: Quantum and thermal effects in H2 dissociative adsorption—evaluation of free-energy barriers in multidimensional quantum-systems. Phys. Rev. Lett. 72, 1124–1127 (1994)

    Article  ADS  Google Scholar 

  12. Jonsson H., Mills G., Jacobsen K.W.: Nudged elastic band method for finding minimum energy paths of transitions. In: Berne, B.J., Ciccotti, G., Coker, D.F. (eds) Classical and Quantum Dynamics in the Condensed Phase, pp. 385–404. World Scientific, Singapore (1998)

    Chapter  Google Scholar 

  13. Henkelman G., Uberuaga B.P., Jonsson H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    Article  ADS  Google Scholar 

  14. Maragliano L., Vanden-Eijnden E.: Single-sweep methods for free energy calculations. J. Chem. Phys. 128, 184110 (2008)

    Article  ADS  Google Scholar 

  15. Maragliano L., Fischer A., Vanden-Eijnden E., Ciccotti G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125, 024106–024115 (2006)

    Article  ADS  Google Scholar 

  16. Vanden Eijnden E.: Transition path theory. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulation in Condensed Matter: From Materials to Chemical Biology, pp. 349–391. Springer, Berlin (2006)

    Google Scholar 

  17. Ronnebro E., Noreus D., Kadir K., Reiser A., Bogdanovic B.: Investigation of the perovskite related structures of NaMgH3, NaMgF, and Na3AlH6. J. Alloys Compd. 299, 101–106 (2000)

    Article  Google Scholar 

  18. http://www.cryst.ehu.es/cryst/getwp.html

  19. Vuilleumier R.: Density functional theory based ab initio MD using the Car-Parrinello approach. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulation in Condensed Matter: From Materials to Chemical Biology, pp. 223–285. Springer, Berlin (2006)

    Chapter  Google Scholar 

  20. Becke A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  ADS  Google Scholar 

  21. Lee C., Yang W., Parr R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  ADS  Google Scholar 

  22. Troullier N., Martins J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  ADS  Google Scholar 

  23. Martyna G.J., Klein M.L., Tuckerman M.: Nose-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)

    Article  ADS  Google Scholar 

  24. Vanden-Eijnden E., Ciccotti G.: Second-order integrator for Langevin equations with holonomic constraints. Chem. Phys. Lett. 492, 310–316 (2006)

    Article  Google Scholar 

  25. CPMD, Copyright IBM Corp. 1990–2001, Copyright MPI für Festkorperforschung Stuttgart 1997–2004

    Google Scholar 

  26. Sprik M.: Computation of the pK of liquid water using coordination constraints. Chem. Phys. 258, 139–150 (2000)

    Article  ADS  Google Scholar 

  27. Maragliano L., Vanden-Eijnden E.: A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett. 426, 168–175 (2006)

    Article  ADS  Google Scholar 

  28. Weinan E., Ren W., Vanden-Eijnden E.: String method for the study of rare events. Phys. Rev. B 66, 052301–052305 (2002)

    Article  ADS  Google Scholar 

  29. Weinan E., Ren W., Vanden-Eijnden E.: Simplified and improved string method for computing the minimum energy paths in barrier-crossing event. J. Chem. Phys. 126, 164103–164108 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Bonella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Monteferrante, M., Bonella, S., Meloni, S., Vanden-Eijnden, E., Ciccotti, G. (2008). Calculations of free energy barriers for local mechanisms of hydrogen diffusion in alanates. In: Yip, S., de la Rubia, T.D. (eds) Scientific Modeling and Simulations. Lecture Notes in Computational Science and Engineering, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9741-6_13

Download citation

Publish with us

Policies and ethics