Advertisement

Teaching Physical Chemistry in Disadvantaged Contexts: Challenges, Strategies and Responses

  • L. Mammino
Chapter

Abstract

Physical chemistry courses are often considered among the most difficult ones – if not the most difficult – by chemistry students. The reasons may be traced to their specific requirements, from the extensive familiarity with mathematics and its descriptive role in physical sciences to the expansion of logical thinking into abstract thinking (as an essential tool for the construction and understanding of models) and to the conceptual demands of models and procedures. The difficulties experienced by students increase considerably in contexts that are disadvantaged because of the aftermaths of historical reasons. In these contexts, the combined and mutually enhancing impacts of factors like inadequate background preparation, inadequate or poor mastering of the language that is the medium of instruction and, often, also inadequate visualisation abilities, make students’ progress through physical chemistry courses comparatively more arduous. These contexts pose greater challenges for the design of viable teaching strategies. On the other hand, the usefulness of the designed strategies extends beyond the contexts for which they were generated, because their specific objective of facilitating students’ approach to concepts and techniques, when such approach is particularly arduous, makes them generally viable.

Keywords

Laboratory Report Literal Meaning Visual Literacy Chemistry Student Carnot Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mammino L. (2008). Teaching chemistry with and without external representations in professional environments with limited resources. In Gilbert J.K., Reiner M. and Nakhlekh M. (Eds.), Visualization: Theory and Practice in Science Education. Dordrecht: Springer, 155–185.Google Scholar
  2. 2.
    Harre R. (1970). The Principles of Scientific Thinking. University of Chicago Press, Chicago.Google Scholar
  3. 3.
    Case S.M. (1968). The language barrier in science teaching. Teacher Education in New Countries, 9(1), 15–26.Google Scholar
  4. 4.
    Zepp R.A. (1981). Relationships between mathematics achievements and various English language proficiencies. Educational Studies in Mathematics, 12, 59–70.CrossRefGoogle Scholar
  5. 5.
    Zepp R.A. (1982). Bilinguals’ understanding of logical connectives in English and Sesotho. Educational Studies in Mathematics, 13, 205–221.CrossRefGoogle Scholar
  6. 6.
    Brodie K. (1989). Learning mathematics in a second language. Educational Review 41 (1), 39–53.CrossRefGoogle Scholar
  7. 7.
    Chipere N. (1993). Dependence and the transition from high school to university in Zimbabwe. Society for Research in High Education International News, 19, 4–7.Google Scholar
  8.  8.
    Nangu N.C. (1994). How can we be expected to learn science in English? Southern African Association for Research in Mathematics and Science Education Proceedings.Google Scholar
  9. 9.
    Nyapfeme K. and Letseka M. (1995). Problems of learning among first year students in South African Universities. South African Journal of High Education, 9(1), 159–167.Google Scholar
  10. 10.
    Mammino L. (1998). Science students and the language problem: suggestions for a systematic approach. Zimbabwe Journal of Educational Research, 10(3), 189–209.Google Scholar
  11. 11.
    Seepe S. (2000). A pedagogical justification for mother tongue instruction. In Seepe S. and Dowling D. (Eds.), The Language of Science. Johannesburg: Vyvlia Publishers, 40–51.Google Scholar
  12. 12.
    Mammino L. (2000). Studying the Details of the Transition from the Mother Tongue to the Second Language, In Seepe S. and Dowling D. (Eds.), The Language of Science. Johannesburg: Vyvlia Publishers, 94–101.Google Scholar
  13. 13.
    Rubanza Y.I. (2002). Competition through English. The Failure of Tanzania’s Language Policy. In Prah K.K. (Ed.), Rehabilitating African Languages, CASAS Book series No 18, 39–51.Google Scholar
  14. 14.
    Mammino L. (2006). Terminology in Science and Technology – An Overview Through History and Options. Thohoyandou: Ditlou Publishers.Google Scholar
  15. 15.
    Prah K.K. (1993). Mother Tongue for Scientific and Technological Development in Africa. German Foundation for International Development. Education, Science and Documentation Centre, Bonn.Google Scholar
  16. 16.
    Prah K.K. (1995). African Languages for the Mass Education of Africans. German Foundation for International Development. Education, Science and Documentation Centre, Bonn.Google Scholar
  17. 17.
    Prah K.K. (1998). The missing link in African education and development. In Prah K.K. (Ed.), Between Distinction and Extinction. Johannesburg: Witswatersrand University Press, 1–16.Google Scholar
  18. 18.
    Prah K.K. (2002). The Rehabilitation of African Languages. In Prah K.K. (Ed.), Rehabilitating African Languages, CASAS Book series No 18, 1–6.Google Scholar
  19. 19.
    Mammino L. (2004). L’impatto, sull’apprendimento della chimica, dell’uso di una lingua diversa da quella materna. Il pensiero Chimico e la Formazione Scientifica nelle Riforme della Scuola, Assisi (Italy), December 2004.Google Scholar
  20. 20.
    Prah K.K. (2008). The Language of Instruction Conundrum in Africa. Meeting on The Implications of Language for Peace and Development (IMPLAN). University of Oslo, May 2008.Google Scholar
  21. 21.
    Love A., Mammino L. (1997). Using the Analysis of Errors to Improve Students’ Expression in the Sciences, Zimbabwe Journal of Educational Research, 9(1), 1–17.Google Scholar
  22. 22.
    Mammino L. (2005). Language-related difficulties in science learning. I. Motivations and approaches for a systematic study. Journal of Educational Studies, 4(1), 36–41.Google Scholar
  23. 23.
    Mammino L. (2006). Language-related difficulties in science learning. II. The sound-concept correspondence in a second language. Journal of Educational Studies, 5(2), 189–213.Google Scholar
  24. 24.
    Mammino L. (2004). Dominancia del concepto de reacción, y de los terminos asociados, en las percepciones de alumnos de quimica. Anuario Latinoamericano de Educación Quiacute;mica XVIII, 46–52.Google Scholar
  25. 25.
    Mammino L. (2007). Language-related difficulties in science learning. III. Selection and combination of individual words. Journal of Educational Studies, 6(2), 199–214.Google Scholar
  26. 26.
    Mammino L. (2002). La percepción de la distinción entre sistemas y procesos por parte de los alumnos de quimica. Anuario Latinoamericano de Educación Quimica, XV, 125–129.Google Scholar
  27. 27.
    Mammino L. (Submitted manuscript). Language-related difficulties in science learning. IV. The use of prepositions and the expression of related functions.Google Scholar
  28. 28.
    Mammino L. (2002). Actitud hacia números y valores en cursos de quimica general. Anuario Latinoamericano de Educación Quimica, XVI, 5–10.Google Scholar
  29. 29.
    Mammino L. (2001). Physical quantities and their changes. Difficulties and perceptions by chemistry students. SAARMSTE (Southern African Association for Research in Mathematics, Science and Technology Education) Journal, 5, 29–40.Google Scholar
  30. 30.
    Mammino L. (2000). General y particular en química. Anuario Latinoamericano de Educación Química, XIV, 25–28.Google Scholar
  31. 31.
    Mammino L. (2005). Cause and effect – a relationship whose nature involves conceptual understanding, scientific method, logic and language. Anuario Latinoamericano de Educación Química, XXI, 33–37.Google Scholar
  32. 32.
    Mammino L. (1997). Estudio de la forma en que los alumnos perciben la distinción y las mutuas relaciones entre el mundo micróscopico y el mundo macróscopico. Anuario Latinoamericano de Educación Química, 9(2), 178–189.Google Scholar
  33. 33.
    Mammino L., Cardellini L. (2005). Studying students’ understanding of the interplay between the microscopic and the macroscopic descriptions in chemistry. Baltic Journal of Science Education 1(7), 51–62.Google Scholar
  34. 34.
    Lijnse P.L., Licht P., Vos W. & Waarlo A.J. (1990). Relating Macroscopic Phenomena to Microscopic Particles. A Central Problem in Secondary Science Education. Utrecht: CD-β Press.Google Scholar
  35. 35.
    Mammino L. (2005). Method-related aspects in an introductory theoretical chemistry course. Journal of Molecular Structure (Theochem) 729, 39–45.CrossRefGoogle Scholar
  36. 36.
    Mammino L., Kabanda M.M. (2006). Semiempirical methods as introduction to computational chemistry. 18th International Conference on Chemical Education. Seoul (Korea), August 2006.Google Scholar
  37. 37.
    Gilbert J.K. (2008). Visualization: An emergent field of practice and enquiry in science education. In Gilbert J.K., Reiner M., Nakhleh M. (Eds.), Visualization: Theory and Practice in Science Education. Dordrecht: Springer, 3–24.Google Scholar
  38. 38.
    Gabel D.L., Samuel K.V., Hunn D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education 64(8), 695–697.CrossRefGoogle Scholar
  39. 39.
    Gabel D.L. (1993). Use of the particle nature of matter in developing conceptual understanding. Journal of Chemical Education 70(3), 193–194.CrossRefGoogle Scholar
  40. 40.
    Mammino L. (1999). Semplificazione nella presentazione dei concetti: necessità ed esigenze. Edichem’99: Chemistry in the Perspective of the New Century. Bari, 341–356.Google Scholar
  41. 41.
    Brewer I.M. (1985). Learning More and Teaching Less. Guildford, Surrey: SRHE & NFER-Nelson.Google Scholar
  42. 42.
    Forman E.A., Cazden C.B. (1985). Exploring Vygotskian frameworks in education: the cognitive value of peer interaction. In Wertsch J.V. (Ed.), Culture, Communication and Cognition: Vygotskian perspectives. Cambridge: Cambridge University Press, 323–347.Google Scholar
  43. 43.
    Mammino L. (1998). Enseñanza interactiva en cursos de Quimica teórica. Anuario Latinoamericano de Educación Química, XI, 275–278.Google Scholar
  44. 44.
    Mammino L. (2005). The use of questions in the chemistry classroom: an interaction instrument with maieutic nature. Anuario Latinoamericano de Educación Química, XXI, 241–245.Google Scholar
  45. 45.
    Cooper M.M. (1993). Writing/an approach for large enrolment chemistry courses. Journal of Chemical Education, 70(6), 476–477.CrossRefGoogle Scholar
  46. 46.
    Beall H., Trimbur J. (1993). Writing as a tool for teaching chemistry. Journal of Chemical Education, 68(1), 148–149.Google Scholar
  47. 47.
    Castro E.A. (1995). Escribir sobre quimica para aprender quimica. Panamerican Newsletters, 8(4), 8–9.Google Scholar
  48. 48.
    Mammino L. (1995). Teaching/learning theoretical chemistry at undergraduate level. Southern Africa Journal of Mathematics and Science Education, 2(1&2), 69–88.Google Scholar
  49. 49.
    Mammino L. (2002). Integrating chemistry teaching and language teaching. 17th International Conference on Chemical Education. Beijing, August 2002.Google Scholar
  50. 50.
    Bradley J.D., Brand M., Gerrans G.C. (1987). Excellence and the accurate use of language, symbols and representations in chemistry. In Widening the Scope of Chemistry, IUPAC Blackwell Scientific Publications.Google Scholar
  51. 51.
    Mammino L. (1995). Algunas reflexiones sobre el rigor conceptual y formal en la enseñanza de la química. Anuario Latinoamericano de Educación Química, 8(2), 375–384.Google Scholar
  52. 52.
    Mammino L. (1998). Precision in wording: a tool to facilitate the understanding of Chemistry. CHEMEDA, the Australian Journal of Chemical Education, 48 & 49 & 50, 30–38.Google Scholar
  53. 53.
    Mammino L. (2000). Rigour as a pedagogical tool. In Seepe S. and Dowling D. (Eds.), The Language of Science. Johannesburg: Vyvlia Publishers, 52–71.Google Scholar
  54. 54.
    Mammino L. (1995). Il linguaggio e la scienza. Torino: Societá Editrice Internazionale.Google Scholar
  55. 55.
    Mammino L. (2000). Educating towards the Language of Science. In Seepe S. and Dowling D. (Eds.), The Language of Science. Johannesburg: Vyvlia Publishers, 72–93.Google Scholar
  56. 56.
    Mammino L. (1998). Evidenciación de estructuras lógicas en la enseñanza de la química teórica. XXIV International Conference of Theoretical Chemists of Latin Expression, Puebla (Mexico), September 1998.Google Scholar
  57. 57.
    Mammino L. (1997). La matematica come strumento di descrizione. Nuova Secondaria, 10, 94–95.Google Scholar
  58. 58.
    Mammino L. (2000). Making mathematics student-friendly in theoretical chemistry courses. 16th International Conference on Chemical Education. Budapest, August 2000.Google Scholar
  59. 59.
    Mammino L. (2002). Mathematics in Chemistry: a Challenge for Tertiary Level Chemical Education. 17th International Conference on Chemical Education. Beijing August 2002.Google Scholar
  60. 60.
    Mammino L. (2000). Alternative Conceptions and Misconceptions about the Phases of Matter. SAARMSE Conference 2000. Port Elizabeth (South Africa), January 2000.Google Scholar
  61. 61.
    Mammino L. (2007). Chemistry Students’ perceptions of the Factors Influencing Phase Transitions of Pure Substances, as Expressed in Laboratory Reports. Anuario Latinoamericano de Educación Química XXIII, 41–46.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VendaThohoyondouSouth Africa

Personalised recommendations