Skip to main content

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 3))

Abstract

Carbon foams are hypothetical carbon allotropes that contain graphene (sp 2carbon) segments, connected by sp 3carbon atoms, resulting in porous structures. These structures may represent novel stable carbon modifications with sp 2+ sp 3hybridization. Carbon foams show high structural stability at very low mass density. The construction principles, the structures, the energetics as well as the electronic and mechanical properties of carbon foams is discussed. The study is restricted to foam structures with sixfold rings and hexagonal cross-sections (hexagon preserving foams). The relation to defected graphite and the so-called Glitter structures is briefly discussed. The similarity of electronic band structure and the electronic DOS (density of states) of foams to carbon nanotubes is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of Fullerenes and Carbon Nanotubes. Academic Press, London

    Google Scholar 

  2. Balaban AT, Klein DJ, Folden CA (1994) Chem Phys Lett 217:266–270

    Article  Google Scholar 

  3. Benedek G, Milani P, Ralchenko VG (2001) Nanostructured carbon for advanced applications. Springer, Berlin

    Book  Google Scholar 

  4. Blank VD, Buga SG, Serebryanaya NR, Denisov VN, Dubitsky GA, Ivlev AN, Mavrin BN, Popov MY (1995) Phys Lett A 205:208–216

    Article  CAS  Google Scholar 

  5. Braga SF, Galvao DS (2007) Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression. J Comput Chem 28(10):1724–1734

    Article  CAS  Google Scholar 

  6. Bucknum MJ, Castro EA (2006) J Chem Theory Comput 2:775–781

    Article  CAS  Google Scholar 

  7. Bucknum MJ, Hoffmann R (1994) A hypothetical dense 3,4-connected carbon net and related b2c and cn2 nets built from 1,4-cyclohexadienoid units. J Am Chem Soc 116(25): 11, 456–11,464

    Google Scholar 

  8. Bucknum MJ, Stamatin I, Castro EA (2005) A chemically intuitive proposal for the structure of n-diamond. Mol Phys 103(20):2707–2715

    Article  CAS  Google Scholar 

  9. Bucknum MJ, Pickard CJ, Stamatin I, Castro EA (2006) On the structure of i-carbon. J Theoret Comput Chem 5(2):175–185

    Article  CAS  Google Scholar 

  10. Dahl JE, Liu SG, Carlson RMK (2003) Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299:96–99

    Article  CAS  Google Scholar 

  11. Ding F, Lin Y, Krasnov PO, Yakobson BI (2007) Nanotube-derived carbon foam for hydrogen sorption. J Chem Phys 127(16):164703

    Article  Google Scholar 

  12. Gogotsi Y (2006) Nanomaterials handbook. Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  13. Gonzalez-Aguilar J, Moreno M, Fulcheri L (2007) Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure. J Phys D-Appl Phys 40:2361–2374

    Article  CAS  Google Scholar 

  14. Harris RJF (1999) Carbon nanotube and related structures: new materials for the twenty-first century. University Press, Cambridge

    Book  Google Scholar 

  15. Hirsch A (1999) Fullerenes and related structures. Springer, Berlin

    Book  Google Scholar 

  16. Hoffmann R, Hughbanks T, Kertesz M, Bird PH (1983) J Am Chem Soc 105:4831–4832

    Article  CAS  Google Scholar 

  17. Iijima S (1980) Direct observation of the tetrahedral bonding in graphitized ccarbon-black by high-resolution electron-microscopy. J Cryst Grow 50:675–683

    Article  CAS  Google Scholar 

  18. Iijima S (1991) Helical microtubules of graphitic ccarbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  19. Ivanovskii A (2008) Assemblies of carbon and boron-nitrogen nanotubes and fullerenes: structure and properties. Rus J Inorgan Chem 53(14):2083–2102

    Article  Google Scholar 

  20. Jorio A, Dresselhaus G, Dresselhaus MS, Eklund P (2008) Carbon nanotubes. Advanced topics in synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  21. Karfunkel HR, Dressler T (1992) J Am Chem Soc 114:2285–2288

    Article  CAS  Google Scholar 

  22. Katsnelson MI (2007) Mater Today 10:20–27

    Article  CAS  Google Scholar 

  23. Klett J, Hardy R, Romine E, Walls C, Burchell T (2000) Carbon 38:953–973

    Article  CAS  Google Scholar 

  24. Klett JW, McMillan AD, Gallego NC, Walls CA (2004) J Mater Sci 39:3659–3676

    Article  CAS  Google Scholar 

  25. Kroto HW (1992) Carbon allotropes: cabron onions introduce new flavor to fullerene studies. Nature 359:670–671

    Article  Google Scholar 

  26. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  27. Kuc A, Seifert G (2006) Phys Rev B 74:214104

    Article  Google Scholar 

  28. Leonard AD, Hudson JL, Fan H, Booker R, Simpson LJ, O’Neill KJ, Parilla PA, Heben MJ, Pasquali M, Kittrell C, Tour JM (2009) Nanoengineered carbon scaffolds for hydrogen storage. J Am Chem Soc 131(2):723–728

    Article  CAS  Google Scholar 

  29. Li JL, Peng QS, Bai GZ, Jiang W (2005) Carbon scrolls produced by high energy ball milling of graphite. Carbon 43:2830–2833

    Article  CAS  Google Scholar 

  30. Liu AY, Cohen ML (1992) Phys Rev B 45:4579–4581

    Article  CAS  Google Scholar 

  31. Liu AY, Cohen ML, Hass KC, Tamor MA (1991) Phys Rev B 43:6742–6745

    Article  CAS  Google Scholar 

  32. Mailhiot C, Mcmahan AK (1991) Phys Rev B 44:11578

    Article  CAS  Google Scholar 

  33. McIntosh GC, Yoon M, Berber S, Tomanek D (2004) Diamond fragments as building blocks of functional nanostructures. Phys Rev B 70:045401

    Article  Google Scholar 

  34. McSkimin HJ, Andreatc P Jr (1972) Elastic-moduli of diamond as a function of pressure and temperature. J Appl Phys 43(7):2944

    Article  CAS  Google Scholar 

  35. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  36. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  37. Park N, Ihm J (2000) Phys Rev B 62:7614–7618

    Article  CAS  Google Scholar 

  38. Pokropivny VV, Ivanovskii AL (2008) New nanoforms of carbon and boron nitride. Uspekhi Khimii 77(10):899–937

    Google Scholar 

  39. Ribeiro FJ, Tangney P, Louie SG, Cohen ML (2005) Phys Rev B 72:214109

    Article  Google Scholar 

  40. Seifert G, Porezag D, Frauenheim T (1996) Int J Quantum Chem 58:185–192

    Article  CAS  Google Scholar 

  41. Serebryanaya NR, Blank VD, Ivdenko VA, Chernozatonskii LA (2001) Solid State Comm 118:183–187

    Article  CAS  Google Scholar 

  42. Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27:227–356

    Article  CAS  Google Scholar 

  43. Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated c-60 in carbon nanotubes. Nature 396:323–324

    Article  CAS  Google Scholar 

  44. Ströbel R, Garche J, Moseley PT, Jorissen L, Wolf G (2006) Hydrogen storage by carbon materials. J Pow Sour 159:781–801

    Article  Google Scholar 

  45. Suarez-Martinez I (2007) Theory of diffiusion and plasticity in layered carbon materials, PhD thesis, University of Sussex

    Google Scholar 

  46. Suarez-Martinez I, Savini G, Heggie MI (2006) First principles modelling of dislocations in AA graphite, Conference-Carbon 2006, Aberdeen

    Google Scholar 

  47. Talyzin AV, Dubrovinsky LS, Oden M, Le Bihan T, Jansson U (2002) Phys Rev B 66:165409

    Article  Google Scholar 

  48. Telling RH, Ewels CP, El-Barbary AA, Heggie MI (2003) Nat Mater 2:333–337

    Article  CAS  Google Scholar 

  49. Tomanek D (2002) Physica B 323:86–89

    Article  CAS  Google Scholar 

  50. Umemoto K, Saito S, Berber S, Tomanek D (2001) Phys Rev B 64:193409

    Article  Google Scholar 

  51. Vanvechten JA, Keszler DA (1987) Phys Rev B 36:4570–4573

    Article  CAS  Google Scholar 

  52. Wang CX, Yang YH, Liu QX, Yang GW, Mao YL, Yan XH (2004) Appl Phys Lett 84: 1471–1473

    Article  CAS  Google Scholar 

  53. Wang ZW, Zhao YS, Tait K, Liao XZ, Schiferl D, Zha CS, Downs RT, Qian J, Zhu YT, Shen TD (2004) Proc Nat Acad Sci USA 101:13,699–13,702

    Google Scholar 

Download references

Acknowledgements

Support of this research is acknowledged to Stiftung Energieforschung BW and Deutsche Forschungsgemeinschaft DFG. The authors thank also M. Heggie and I. Suarez-Martinez for data about screw dislocated graphite. Figures were made using GTK Display Interface for Structures 0.89.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gotthard Seifert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Seifert, G., Kuc, A., Heine, T. (2010). Hexagon Preserving Carbon Nanofoams. In: Colombo, L., Fasolino, A. (eds) Computer-Based Modeling of Novel Carbon Systems and Their Properties. Carbon Materials: Chemistry and Physics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9718-8_3

Download citation

Publish with us

Policies and ethics