Skip to main content

Liquid Carbon: Freezing Line and Structure Near Freezing

  • Chapter
  • First Online:
Computer-Based Modeling of Novel Carbon Systems and Their Properties

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 3))

Abstract

This chapter deals with the phase diagram of carbon with emphasis on the liquid phase occurring in extreme conditions of temperature and pressure. After presenting a critical review of the experimental results and still unresolved issues, the authors discuss the possibility of modeling carbon by use of empirical potentials. Also the techniques to evaluate numerically the free energy of each phase are presented in detail. The second part of the chapter discusses in detail the structure of the liquid in different ranges of pressure, the pressure–density equations of state at different temperatures and the possibility of a liquid–liquid phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation 1.5then becomes:

    $$\frac{\beta {F}^{\textrm{ E(CM)}}} {N} \; = 3\textrm{ ln}\Lambda -\frac{3} {2}\textrm{ ln}\left ( \frac{2\pi } {\beta \alpha }\right ) -\frac{3{N}_{s}} {2N} \left (\textrm{ ln}\left (\frac{\alpha \beta } {2\pi } \right ) + \textrm{ ln}{\mathit{NN}}_{s}\right )$$

    where N s is the number of sheets. Equation 1.6becomes:

    $$\frac{\beta \Delta {F}^{\maltese \textrm{ (CM)}\rightarrow \,\maltese }} {N} = -\frac{{N}_{s}} {N} \,\textrm{ ln} \frac{V } {{N}_{ws}}$$

    where, in \({N}_{ws} = N/{n}_{ws}\), one has to define the Wigner–Seitz cell within a graphite sheet; this leads to n ws = 2. Equation 1.8becomes:

    $$\frac{\beta \Delta {F}^{ \frac{1} {N} }} {N} = -\frac{{N}_{s}} {N} \,\left [\frac{3} {2}\textrm{ ln}\left (N{N}_{s}\,\frac{\alpha \beta } {2\pi } \right ) + \textrm{ ln} \frac{V } {{N}_{ws}}\right ].$$
  2. 2.

    For the correct application of the method it is not needed to have the three states at the same P. It is only required that the phases share a broad stable region in pressure at the chosen T.

  3. 3.

    The distribution usually exhibits a bimodal shape in case of phase boundary crossing.

  4. 4.

    The difference between these two values gives a hint on the uncertainties related to the two different methods used for calculating coexistence, given that the DF-MD set-up is quite similar in the two works.

  5. 5.

    The transition in the stable liquid region is supercritical, thus continuous, but taking place in a short range of pressures around 6.5 GPa.

  6. 6.

    The authors adopted the graphite melting line measured by Togaya [16]. This melting line is reported in Fig. 1.4, together with our results. According to Glosli and Ree, from the maximum of that melting line would branch off the LLPT coexistence line.

  7. 7.

    The factor two multiplying the off-diagonal partial distribution functions (g ij (r), with ij) is needed when those distributions are calculated according to the literature (e.g. Refs. [71, 72]). The algorithm calculating the g ij (r) browses the pairs of particles only once, as is commonly done for the total g(r). If the algorithm browsed over all the neighbors of each particle, the factor two would clearly not be needed.

  8. 8.

    A fourfold coordinated liquid with a rather pronounced diamond-like structure in the first coordination shell [47]).

References

  1. Whittaker AG (1978) Science 200:4343

    Article  Google Scholar 

  2. Smith PPK, Buseck PR (1982) Science 216:984

    Article  CAS  Google Scholar 

  3. Li Q, Ma Y, Oganov AR, Wang H, Wang H, Xu Y, Cui T, Mao H-K, Zou G (2009) Phys Rev Lett 102:175506

    Article  Google Scholar 

  4. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  5. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Jiang SVMD, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  7. Bundy FP (1963) J Chem Phys 38:631

    Article  CAS  Google Scholar 

  8. Bundy FP (1963) J Chem Phys 38:618

    Article  CAS  Google Scholar 

  9. Fateeva NS, Vereshchagin LF (1971) Pis’ma Zh Ekps Teor Fiz 13:157

    CAS  Google Scholar 

  10. Galli G, Martin RM, Car R, Parrinello M (1990) Science 250:1547

    Article  CAS  Google Scholar 

  11. Shaner JW, Brown JM, Swenson AC, McQueen RG (1984) J Phys (Paris) Colloq 45:C8

    Article  Google Scholar 

  12. Grumbach MP, Martin RM (1996) Phys Rev B 54:15730

    Article  CAS  Google Scholar 

  13. Asinovskii EI, Kirillin AV, Kostanovskii AV (1997) High Temp 35:704

    CAS  Google Scholar 

  14. Asinovskii EI, Kirillin AV, Kostanovskii AV, Fortov VE (1998) High Temp 36:716

    CAS  Google Scholar 

  15. Bundy FP, Bassett WA, Weathers MS, Hemley RJ, Mao HK, Goncharov AF (1996) Carbon 34:141

    Article  CAS  Google Scholar 

  16. Togaya M (1997) Phys Rev Lett 79:2474

    Article  CAS  Google Scholar 

  17. Korsunskaya IA, Kamenetskaya DS, Aptekar IL (1972) Fiz Metal Metalloved 34:942 English version in: (1972) Phys. Met. Metallogr. (USSR) 34:39.

    CAS  Google Scholar 

  18. van Thiel M, Ree FH (1993) Phys Rev B 48:3591

    Article  Google Scholar 

  19. Fried LE, Howard WM (2000) Phys Rev B 61:8734

    Article  CAS  Google Scholar 

  20. Glosli JN, Ree FH (1999) Phys Rev Lett 82:4659

    Article  CAS  Google Scholar 

  21. Glosli JN, Ree FH (1999) J Chem Phys 110:441

    Article  CAS  Google Scholar 

  22. Wu CJ, Glosli JN, Galli G, Ree FH (2002) Phys Rev Lett 89:135701

    Article  Google Scholar 

  23. Bradley DK, Eggert JH, Hicks DG, Celliers PM, Moon SJ, Cauble RC, Collins GW (2004) Phys Rev Lett 93:195506

    Article  CAS  Google Scholar 

  24. Knudson MD, Desjarlais MP, Dolan DH (2008) Science 322:1822–1825

    Article  CAS  Google Scholar 

  25. Yin MT, Cohen ML (1983) Phys Rev Lett 50:2006

    Article  CAS  Google Scholar 

  26. Correa AA, Bonev SA, Galli G (2006) PNAS 103:1204–1208

    Article  CAS  Google Scholar 

  27. Los JH, Fasolino A (2003) Phys Rev B 68:024107

    Article  Google Scholar 

  28. Ghiringhelli LM, Los JH, Meijer EJ, Fasolino A, Frenkel D (2005) Phys Rev Lett 94:145701

    Article  Google Scholar 

  29. Los JH, Ghiringhelli LM, Fasolino A, Meijer EJ (2005) Phys Rev B 72:214102. Erratum: Phys Rev B 73:229901 (2006)

    Article  Google Scholar 

  30. Ghiringhelli LM, Valeriani C, Los JH, Meijer EJ, Fasolino A, Frenkel D (2008) Mol Phys 106:2011

    Article  CAS  Google Scholar 

  31. Savvatimsky AI (2005) Carbon 43:1115

    Article  Google Scholar 

  32. Bradley DK, Eggert JH, Smith RF, Prisbrey ST, Hicks DG, Braun DG, Biener J, Hamza AV, Rudd RE, Collinds GW (2009) Phys Rev Lett 102:075503

    Article  CAS  Google Scholar 

  33. Brenner DW, Shenderova OA, Areshkin DA (1998) In: Lipkowitz KB, Boyd DB (eds.) Reviews in computational chemistry, vol 5. Wiley, New York

    Google Scholar 

  34. Tersoff J (1988) Phys Rev Lett 61:2879

    Article  CAS  Google Scholar 

  35. Brenner DW (1990) Phys Rev B 42:9458. Erratum: Phys Rev B 46:1948 (1992)

    Article  CAS  Google Scholar 

  36. Brenner DW, Harrison JH, White CT, Colton RJ (1991) Thin Solid Films 206:220

    Article  CAS  Google Scholar 

  37. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) J Phys Condens Matter 14:783

    Article  CAS  Google Scholar 

  38. Stuart SJ, Tutein AB, Harrison JA (2000) J Phys Chem 14:6472

    Google Scholar 

  39. Kum O, Ree FH, Stuart SJ, Wu CJ (2003) J Chem Phys 119:6053

    Article  CAS  Google Scholar 

  40. Ghiringhelli LM (2006) On the nature of the phase transitions in covalent liquids. PhD thesis. It can be downloaded from: http://dare.uva.nl/document/18341/

  41. Anwar J, Frenkel D, Noro MG (2003) J Chem Phys 118:728

    Article  CAS  Google Scholar 

  42. Johnson JK, Zollweg JA, Gubbins KE (1993) Mol Phys 78:591

    Article  CAS  Google Scholar 

  43. Frenkel D, Ladd JC (1984) J Chem Phys 81:3188

    Article  CAS  Google Scholar 

  44. Frenkel D, Smit B (2002) Understanding molecular simulation. Academic Press, San Diego, CA

    Google Scholar 

  45. Polson JM, Trizac E, Pronk S, Frenkel D (2000) J Chem Phys 112:5339

    Article  CAS  Google Scholar 

  46. Kofke DA (1993) J Chem Phys 98:4149

    Article  CAS  Google Scholar 

  47. Ghiringhelli LM, Los JH, Meijer EJ, Fasolino A, Frenkel D (2004) Phys Rev B 69:100101(R)

    Article  Google Scholar 

  48. Wang X, Scandolo S, Car R (2005) Phys Rev Lett 95:185701

    Article  Google Scholar 

  49. Brygoo S, Henry E, Loubeyre P, Eggert J, Koenig M, Loupias B, Benuzzi-Meounaix A, Rabec le Gloahec M (2007) Nat Mater 6:274–277

    Article  CAS  Google Scholar 

  50. Strässler S, Kittel C (1965) Phys Rev 139:A758

    Article  Google Scholar 

  51. van Thiel M, Ree FH (1992) High Pressure Res 10:607

    Article  Google Scholar 

  52. Tanaka H (2000) Phys Rev E 62:6968–6976

    Article  CAS  Google Scholar 

  53. Ponyatovsky EG (2003) J Phys Condens Matter 15:6123

    Article  CAS  Google Scholar 

  54. Morris JR, Wang CZ, Ho KM (1995) Phys Rev B 52:4138

    Article  CAS  Google Scholar 

  55. Eppenga R, Frenkel D (1984) Mol Phys 52:1303

    Article  CAS  Google Scholar 

  56. Vorholz J, Harismiadis VI, Panagiotopoulos AZ (1996) J Chem Phys 105:8469

    Article  Google Scholar 

  57. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

  58. CPMD, version 3.3, developed by Hutter J, Alavi A, Deutsch T, Bernasconi M, Goedecker S, Marx D, Tuckerman M, Parrinello M, MPI für Festkörperforschung and IBM Zurich Research Laboratory (1995–1999)

    Google Scholar 

  59. Hoover WG (1985) Phys Rev A 31:1695

    Article  Google Scholar 

  60. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  61. Perdew JP (1986) Phys Rev B 33:8822(R). Erratum Phys Rev B 34:7406 (1986)

    Article  Google Scholar 

  62. Blöchl PE, Parrinello M (1992) Phys Rev B 45:9413

    Article  Google Scholar 

  63. Harada A, Shimojo F, Hoshino K (2007) J Non-Crystal Solid 353:3519

    Article  CAS  Google Scholar 

  64. Dacosta PG, Nielsen OH, Kunc K (1986) J Phys C Solid State Phys 19:3163

    Article  Google Scholar 

  65. Ghiringhelli LM, Los JH, Fasolino A, Meijer EJ (2005) Phys Rev B 72:214103

    Article  Google Scholar 

  66. Mishima O, Stanley HE (1998) Nature 396:329–335

    Article  CAS  Google Scholar 

  67. Stanley HE, Buldyrev SV, Canpolat M, Mishima O, Sadr-Lahijany MR, Scala A, Starr FW (2000) Phys Chem Chem Phys 2:1551–1558

    Article  CAS  Google Scholar 

  68. Franzese G, Malescio G, Skibinsky A, Buldyrev SV, Stanley HE (2001) Nature 409:692

    Article  CAS  Google Scholar 

  69. Marks NA (2001) Phys Rev B 63:035401

    Article  Google Scholar 

  70. Marks NA (2002) J Phys Condens Matter 14:2901

    Article  CAS  Google Scholar 

  71. Galli G, Martin RM, Car R, Parrinello M (1989) Phys Rev Lett 63:988

    Article  CAS  Google Scholar 

  72. Galli G, Martin RM, Car R, Parrinello M (1990) Phys Rev B 42:7470

    Article  CAS  Google Scholar 

  73. Marks NA, Cooper NC, McKenzie DR, McCulloch DG, Bath P, Russo SP (2002) Phys Rev B 65:075411

    Article  Google Scholar 

  74. Ghiringhelli LM, Valeriani C, Meijer EJ, Frenkel D (2007) Phys Rev Lett 99:055702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge F. Colonna, A. Fasolino, D. Frenkel, J. H. Los, and C. Valeriani for inspiring and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca M. Ghiringhelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Ghiringhelli, L.M., Meijer, E.J. (2010). Liquid Carbon: Freezing Line and Structure Near Freezing. In: Colombo, L., Fasolino, A. (eds) Computer-Based Modeling of Novel Carbon Systems and Their Properties. Carbon Materials: Chemistry and Physics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9718-8_1

Download citation

Publish with us

Policies and ethics