Skip to main content

Development of the Fast Multipole Boundary Element Method for Acoustic Wave Problems

  • Chapter
Book cover Recent Advances in Boundary Element Methods

Abstract

In this chapter, we review some recent development of the fast multipole boundary element method (BEM) for solving large-scale acoustic wave problems in both 2-D and 3-D domains. First, we review the boundary integral equation (BIE) formulations for acoustic wave problems. The Burton-Miller BIE formulation is emphasized, which uses a linear combination of the conventional BIE and hypersingular BIE. Next, the fast multipole formulations for solving the BEM equations are provided for both 2-D and 3-D problems. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the developed fast multipole BEM for solving large-scale acoustic wave problems, including scattering and radiation problems, and half-space problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed (United States Department of Commerce: U.S. Government Printing Office, Washington, D.C., 1972).

    MATH  Google Scholar 

  • S. Amini, “On the choice of the coupling parameter in boundary integral formulations of the exterior acoustic problem,” Appl. Anal., 35, No. 75–92 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • A. J. Burton and G. F. Miller, “The application of integral equation methods to the numerical solution of some exterior boundary-value problems,” Proc. R. Soc. Lond. A, 323, No. 201–210 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • J. T. Chen and K. H. Chen, “Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics,” Eng Anal Bound Elem, 28, No. 6, 685–709 (2004).

    Article  MATH  Google Scholar 

  • S. H. Chen and Y. J. Liu, “A unified boundary element method for the analysis of sound and shell-like structure interactions. I. Formulation and verification,” J. Acoust. Soc. Am., 103, No. 3, 1247–1254 (1999).

    Article  Google Scholar 

  • S. H. Chen, Y. J. Liu, and X. Y. Dou, “A unified boundary element method for the analysis of sound and shell-like structure interactions. II. Efficient solution techniques,” J. Acoust. Soc. Am., 108, No. 6, 2738–2745 (2000).

    Article  Google Scholar 

  • R. D. Ciskowski and C. A. Brebbia, Boundary Element Methods in Acoustics (Kluwer Academic Publishers, New York, 1991).

    MATH  Google Scholar 

  • R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: A pedestrian prescription,” IEEE Antennas Propagat. Mag., 35, No. 3, 7–12 (1993).

    Article  Google Scholar 

  • K. A. Cunefare and G. Koopmann, “A boundary element method for acoustic radiation valid for all wavenumbers,” J. Acoust. Soc. Am., 85, No. 1, 39–48 (1989).

    Article  Google Scholar 

  • K. A. Cunefare and G. H. Koopmann, “A boundary element approach to optimization of active noise control sources on three-dimensional structures,” J. Vib. Acoust., 113, July, 387–394 (1991).

    Article  Google Scholar 

  • E. Darve and P. Havé, “Efficient fast multipole method for low-frequency scattering,” J. Comput. Phys., 197, No. 1, 341–363 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  • N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Ant. Propag., 40, No. 6, 634–641 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • M. Epton and B. Dembart, “Multipole translation theory for the three dimensional Laplace and Helmholtz equations,” SIAM J Sci Comput, 16, No. 865–897 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  • G. C. Everstine and F. M. Henderson, “Coupled finite element/boundary element approach for fluid structure interaction,” J. Acoust. Soc. Am., 87, No. 5, 1938–1947 (1990).

    Article  Google Scholar 

  • M. Fischer, U. Gauger, and L. Gaul, “A multipole Galerkin boundary element method for acoustics,” Eng Anal Bound Elem, 28, No. 155–162 (2004).

    Article  MATH  Google Scholar 

  • L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, “Accelerating fast multipole methods for the helmholtz equation at low frequencies,” IEEE Comput. Sci. Eng., 5, No. 3, 32–38 (1998).

    Article  Google Scholar 

  • L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (The MIT Press, Cambridge, 1988).

    MATH  Google Scholar 

  • L. F. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys., 73, No. 2, 325–348 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • N. A. Gumerov and R. Duraiswami, “Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation,” SIAM J. Sci. Comput., 25, No. 4, 1344–1381 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  • M. F. Gyure and M. A. Stalzer, “A prescription for the multilevel Helmholtz FMM,” IEEE Comput. Sci. Eng., 5, No. 3, 39–47 (1998).

    Article  Google Scholar 

  • D. S. Jones, “Integral equations for the exterior acoustic problem,” Q. J. Mech. Appl. Math., 27, No. 129–142 (1974).

    Article  MATH  Google Scholar 

  • R. Kress, “Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,” Quart. J. Mech. Appl. Math., 38, No. 2, 323–341 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • G. Krishnasamy, T. J. Rudolphi, L. W. Schmerr, and F. J. Rizzo, “Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering,” J. App. Mech., 57, No. 404–414 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • R. E. Kleinman and G. F. Roach, “Boundary integral equations for the three-dimensional Helmholtz equation,” SIAM Rev., 16, No. 214–236 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • S. Koc and W. C. Chew, “Calculation of acoustical scattering from a cluster of scatterers,” J. Acoust. Soc. Am., 103, No. 2, 721–734 (1998).

    Article  Google Scholar 

  • C. Lu and W. Chew, “Fast algorithm for solving hybrid integral equations,” IEE Proc. H, 140, No. 455–460 (1993).

    Google Scholar 

  • Y. J. Liu, “Development and applications of hypersingular boundary integral equations for 3-D acoustics and elastodynamics”, Ph.D., Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign (1992).

    Google Scholar 

  • Y. J. Liu and F. J. Rizzo, “A weakly-singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems,” Comput. Methods Appl.Mech. Eng., 96, No. 271–287 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • Y. J. Liu and S. H. Chen, “A new form of the hypersingular boundary integral equation for 3-D acoustics and its implementation with C$0$ boundary elements,” Comput. Methods Appl.Mech. Eng., 173, No. 3–4, 375–386 (1999).

    Article  MATH  Google Scholar 

  • R. Martinez, “The thin-shape breakdown (TSB) of the Helmholtz integral equation,” J. Acoust. Soc. Am., 90, No. 5, 2728–2738 (1991).

    Article  Google Scholar 

  • W. L. Meyer, W. A. Bell, B. T. Zinn, and M. P. Stallybrass, “Boundary integral solutions of three dimensional acoustic radiation problems,” J. Sound Vib., 59, No. 245–262 (1978).

    Article  MATH  Google Scholar 

  • N. Nishimura, “Fast multipole accelerated boundary integral equation methods,” Appl. Mech. Rev., 55, No. 4 (July), 299–324 (2002).

    Article  Google Scholar 

  • V. Rokhlin, “Rapid solution of integral equations of classical potential theory,” J. Comp. Phys., 60, No. 187–207 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys., 86, No. 2, 414–439 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • V. Rokhlin, “Diagonal forms of translation operators for the Helmholtz equation in three dimensions,” Appl. Comput. Harmon. Anal., 1, No. 1, 82–93 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  • H. A. Schenck, “Improved integral formulation for acoustic radiation problems,” J. Acoust. Soc. Am., 44, No. 41–58 (1968).

    Article  Google Scholar 

  • A. F. Seybert, B. Soenarko, F. J. Rizzo, and D. J. Shippy, “An advanced computational method for radiation and scattering of acoustic waves in three dimensions,” J. Acoust. Soc. Am., 77, No. 2, 362–368 (1985).

    Article  MATH  Google Scholar 

  • A. F. Seybert and T. K. Rengarajan, “The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations,” J. Acoust. Soc. Am., 81, No. 1299–1306 (1987).

    Article  Google Scholar 

  • L. Shen and Y. J. Liu, “An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation,” Comput. Mech., 40, No. 3, 461–472 (2007).

    Article  MATH  Google Scholar 

  • L. Shen and Y. J. Liu, “An adaptive fast multipole boundary element method for 3-D half-space acoustic wave problems,” in review, (2009).

    Google Scholar 

  • M. A. Tournour and N. Atalla, “Efficient evaluation of the acoustic radiation using multipole expansion,” Int. J. Numer. Methods Eng. 46, No. 6, 825–837 (1999).

    Article  MATH  Google Scholar 

  • F. Ursell, “On the exterior problems of acoustics,” Proc. Cambridge Philos. Soc., 74, No. 117–125 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  • R. Wagner and W. Chew, “A ray-propagation fast multipole algorithm,” Microwave Opt. Technol. Lett., 7, No. 435–438 (1994).

    Article  Google Scholar 

  • T. W. Wu, A. F. Seybert, and G. C. Wan, “On the numerical implementation of a Cauchy principal value integral to insure a unique solution for acoustic radiation and scattering,” J. Acoust. Soc. Am., 90, No. 1, 554–560 (1991).

    Article  Google Scholar 

  • S.-A. Yang, “Acoustic scattering by a hard and soft body across a wide frequency range by the Helmholtz integral equation method,” J. Acoust. Soc. Am., 102, No. 5, Pt. 1, November, 2511–2520 (1997).

    Article  Google Scholar 

  • K. Yoshida, “Applications of fast multipole method to boundary integral equation method”, Ph.D. Dissertation, Department of Global Environment Engineering, Kyoto University (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Liu, Y., Shen, L., Bapat, M. (2009). Development of the Fast Multipole Boundary Element Method for Acoustic Wave Problems. In: Manolis, G.D., Polyzos, D. (eds) Recent Advances in Boundary Element Methods. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9710-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9710-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9709-6

  • Online ISBN: 978-1-4020-9710-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics