Advertisement

Vascular Glucose Transport and the Metabolic Syndrome

  • Fatima Martel
  • Elisa Keating

Abstract

The metabolic syndrome comprises a wide range of physiopathological abnormalities, all involved in systemic changes, occurring in different territories of the body. Glucose transporter changes throughout the body are observed in diverse degrees in the metabolic syndrome. This chapter aims to describe the alterations of glucose transport associated with the metabolic syndrome occurring at the vascular level. We will highlight the mechanisms regulating glucose transport in endothelial and vascular smooth muscle cells derived from peripheral vascular beds and from the blood-brain and blood-retinal barriers. Knowledge on this subject will contribute for understanding the physiopathology of the metabolic syndrome, as well as possible treatments for this condition.

Keywords

Diabetes Endothelium Glucose transport Metabolic syndrome Vascular smooth muscle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen LA, Gerritsen ME. Regulation of hexose transport in cultured bovine retinal microvessel endothelium by insulin. Exp Eye Res. 1986; 43: 679–86.PubMedCrossRefGoogle Scholar
  2. Allen TJ, Hardin CD. Influence of glycogen storage on vascular smooth muscle metabolism. Am J Physiol Heart Circ Physiol. 2000; 278: H1993–H2002.PubMedGoogle Scholar
  3. Alpert E, Gruzman A, Totary H, Kaiser N, Reich R, Sasson S. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: role of glucose and 12-hydroxyeicosatetraenoic acid. Biochem J. 2002; 362: 413–22.PubMedCrossRefGoogle Scholar
  4. Alpert E, Altman H, Totary H, Gruzman A, Barnea D, Barash V, Sasson S. 4-Hydroxy tempol-induced impairment of mitochondrial function and augmentation of glucose transport in vascular endothelial and smooth muscle cells. Biochem Pharmacol. 2004; 67: 1985–95.PubMedCrossRefGoogle Scholar
  5. Alpert E, Gruzman A, Riahi Y, Blejter R, Aharoni P, Weisinger G, Eckel J, Kaiser N, Sasson S. Delayed autoregulation of glucose transport in vascular endothelial cells. Diabetologia. 2005; 48: 752–5.PubMedCrossRefGoogle Scholar
  6. Altman H, Alpert E, Sasson S. Do glucose-derived reactive oxygen species contribute to the autoregulation of glucose transport in vascular endothelial and smooth muscle cell? In: Simionecu M, Sima A, Popov D (eds) Cellular dysfunction in atherosclerosis and diabetes: reports from bench to bedside. Romanian Academy Publishing House, Bucharest. 2004; 274–82Google Scholar
  7. Artwohl M, Brunmair B, Fürnsinn C, Hölzenbein T, Rainer G, Freudenthaler A, Porod EM, Huttary N, Baumgartner-Parzer SM. Insulin does not regulate glucose transport and metabolism in human endothelium. Eur J Clin Invest. 2007; 37, 643–50.PubMedCrossRefGoogle Scholar
  8. Atkins KB, Johns D, Watts S, Clinton Webb R, Brosius FC3. Decreased vascular glucose transporter expression and glucose uptake in DOCA-salt hypertension. J Hyperten. 2001; 19: 1581–7.CrossRefGoogle Scholar
  9. Atkins KB, Northcott CA, Watts SW, Brosius FC. Effects of PPAR-gamma ligands on vascular smooth muscle marker expression in hypertensive and normal arteries. Am J Physiol Heart Circ Physiol. 2005; 288: H235–43.PubMedCrossRefGoogle Scholar
  10. Atkins KB, Prezkop A, Park JL, Saha J, Duquaine D, Charron MJ, Olson AL, Brosius FC 3rd. Preserved expression of GLUT4 prevents enhanced agonist-induced vascular reactivity and MYPT1 phosphorylation in hypertensive mouse aorta. Am J Physiol Heart Circ Physiol. 2007; 293: H402–8.PubMedCrossRefGoogle Scholar
  11. Banz WJ, Abel MA, Zemel MB. Insulin regulation of vascular smooth muscle glucose transport in insulin-sensitive and resistant rats. Horm Metab Res. 1996; 28: 271–5.PubMedCrossRefGoogle Scholar
  12. Bar RS, Siddle K, Dolash S, Boes M, Dake B. Actions of insulin and insulinlike growth factors I and II in cultured microvessel endothelial cells from bovine adipose tissue. Metabolism. 1988; 37: 714–20.PubMedCrossRefGoogle Scholar
  13. Barron JT, Koop SJ, Tow JP, Parrillo JE. Differential effects of fatty acids on glycolysis and glycogen metabolism in vascular smooth muscle. Biochim Biophys Acta. 1991; 1093: 125–34.PubMedCrossRefGoogle Scholar
  14. Barron JT, Koop SJ, Tow JP, Parrillo JE. Fatty acid, tricarboxylic and cyclic metabolites and energy metabolism in vascular smooth muscle. Am J Physiol Heart Circ Physiol. 1994; 267: H764–9.Google Scholar
  15. Barron JT, Barany M, Gu L, Parrillo JE. Metabolic fate of glucose in vascular smooth muscle during contraction induced by noradrenaline. J Mol Cell Cardiol. 1998; 30: 709–19.PubMedCrossRefGoogle Scholar
  16. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996; 9: 836–44.PubMedCrossRefGoogle Scholar
  17. Betz AL, Gilboe DD, Yudilevich DL, Drewes LR. Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol. 1973; 225: 586–92.PubMedGoogle Scholar
  18. Betz AL, Bowman PD, Goldstein GW. Hexose transport in microvascular endothelial cells cultured from bovine retina. Exp Eye Res. 1983; 36: 269–77.PubMedCrossRefGoogle Scholar
  19. Blomqvist G, Gjedde A, Gutniak M, Grill V, Widen L, Stoneelander S, Hellstrand E. Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycemia on cerebral glucose utilization. Eur J Nuclear Med. 1991; 18: 834–7.Google Scholar
  20. Brosius FC, Briggs JP, Marcus RG, Barac-Nieto M, Charron MJ. Insulin-responsive glucose transporter expression in renal microvessels and glomeruli. Kidney Int. 1992; 42:1086–92.PubMedCrossRefGoogle Scholar
  21. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nature Rev Mol Cell Biol. 2002; 3: 267–77.CrossRefGoogle Scholar
  22. Busik JV, Olson LK, Grant MB, Henry DN. Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier. Invest Ophthalmol Vis Sci. 2002; 43: 2356–63.PubMedGoogle Scholar
  23. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a ‘causal’ anti-oxidant therapy. Diabetes Care. 2003; 26: 1589–96.PubMedCrossRefGoogle Scholar
  24. Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus. Circulation. 1993; 87: V67–76.Google Scholar
  25. Cohen G, Livovsky DM, Kapitulnik J, Sasson S. Bilirubin increases the expression of glucose transporter-1 and the rate of glucose uptake in vascular endothelial cells. Rev Diabet Stud. 2006; 3: 127–33.PubMedCrossRefGoogle Scholar
  26. Cohen G, Riahi Y, Alpert E, Gruzman A, Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem. 2007; 113: 259–67.PubMedCrossRefGoogle Scholar
  27. Cooper DR, Khalakdina A, Watson JE. Chronic effects of glucose on insulin signaling in A-10 vascular smooth muscle cells. Arch Biochem Biophys. 1993; 302: 490–498.PubMedCrossRefGoogle Scholar
  28. Corkey RF, Corkey BE, Gimbrone MA. Hexose transport in normal and SV40-transformed human endothelial cells in culture. J Cell Physiol. 1981; 106: 425–34.PubMedCrossRefGoogle Scholar
  29. Cornford EM, Hyman S, Cornford ME, Clare-Salzler M. Down-regulation of blood-brain glucose transport in the hyperglycemic nonobese diabetic mouse. Neurochem Res. 1995; 20:869–73.PubMedCrossRefGoogle Scholar
  30. Cowell RM, Russell JW. Nitrosative injury and anti-oxidant therapy in the management of diabetic neuropathy. J Investig Med. 2004; 52: 33–44.PubMedCrossRefGoogle Scholar
  31. Culic O, Decking UKM, Bergschneider E, Schrader J. Purinogen is not an endogenous substrate used in endothelial cells during substrate depletion. Biochem J. 1999a; 338: 523–7.Google Scholar
  32. Culic O, Decking UKM, Schrader J. Metabolic adaptation of endothelial cells to substrate deprivation. Am J Physiol Cell Physiol. 1999b; 276: C1061–68.Google Scholar
  33. Culic O, Gruwel MLH, Schrader J. Energy turnover of vascular endothelial cells. Am J Physiol Cell Physiol. 1997; 273: C205–13.Google Scholar
  34. Dagher Z, Ruderman N, Tornheim K, Ido Y. Acute regulation of fatty acid oxidation and AMP-mediated protein kinase in human umbilical vein endothelial cells. Circ Res. 2001; 88: 1276–82.PubMedCrossRefGoogle Scholar
  35. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005; 111: 1448–54.PubMedCrossRefGoogle Scholar
  36. Debosch BJ, Deo K, Kumagai AK. Insulin-like growth factor-1 effects on bovine retinal endothelial cell glucose transport: role MAP kinase. J Neurochem. 2002; 81: 728–34.PubMedCrossRefGoogle Scholar
  37. Dobrina A, Rossi F. Metabolic properties of freshly isolated bovine endothelial-cells. Biochim Biophys Acta. 1983; 762: 295–301.PubMedCrossRefGoogle Scholar
  38. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82: 47–95.PubMedGoogle Scholar
  39. Ennis SR, Johnson JE, Pautler EL. In situ kinetics of glucose transport across the blood-retinal barrier in normal rats and rats with streptozocin-induced diabetes. Invest Ophthalmol Vis Sci. 1982; 23: 447–56.PubMedGoogle Scholar
  40. Etgen GJ, Fryburg DA, Gibbs EM.Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction and phosphatidylinositol-3-kinase-independent pathway. Diabetes. 1997; 46: 1915–19.PubMedCrossRefGoogle Scholar
  41. Farrell CL, Pardridge WM. Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc Natl Acad Sci USA. 1991; 88: 5779–83.PubMedCrossRefGoogle Scholar
  42. Fernandes R, Suzuki K, Kumagai AK. Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study. Invest Ophthalmol Vis Sci. 2003; 44: 3150–4.PubMedCrossRefGoogle Scholar
  43. Fischer Y, Thomas J, Rosen P, Kammermeier H. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology 1995; 136: 412–20.PubMedCrossRefGoogle Scholar
  44. Fujiwara R, Nakai T. Effects of glucose, insulin, and insulin-like growth factor-1 on glucose transport activity in cultured rat vascular smooth muscle cells. Atherosclerosis. 1996; 127: 49–57.PubMedCrossRefGoogle Scholar
  45. Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis. 2006; 185: 219–26.PubMedCrossRefGoogle Scholar
  46. Gaposchkin CG, Garcia-Diaz JF. Modulation of cultured brain, adrenal and aortic endothelial cell glucose transport. Biochim Biophys Acta. 1996; 1285: 255–66.PubMedCrossRefGoogle Scholar
  47. Gaudreault N, Scriven DR, Moore ED. Characterization of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 2004; 47: 2081–92.PubMedCrossRefGoogle Scholar
  48. Gaudreault N, Scriven DRL, Moore EDW. Assymmetric subcellular distribution of glucose transporters in the endothelium of small contractile arteries. Endothelium. 2006; 13: 317–24.PubMedCrossRefGoogle Scholar
  49. Gaudreault N, Scriven DRL, Laher I, Moore EDW. Subcellular characterization of glucose uptake in coronary endothelial cells. Microvasc Res. 2008; 75: 73–82.PubMedCrossRefGoogle Scholar
  50. Gerhart DZ, LeVasseur RJ, Broderius MA, Drewes LR. Glucose transporter localization in brain using light and electron immunocytochemistry. J Neurosci Res. 1989; 22: 464–72.PubMedCrossRefGoogle Scholar
  51. Gerritsen ME, Burke TM. Insulin binding and effects of insulin on glucose uptake and metabolism in cultured rabbit coronary microvessel endothelium. Proc Soc Exp Biol Med. 1985; 180: 17–23.PubMedGoogle Scholar
  52. Gerritsen ME, Burke TM, Allen LA. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells. Microvasc Res. 1988; 35: 153–66.PubMedCrossRefGoogle Scholar
  53. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994; 94: 110–7.PubMedCrossRefGoogle Scholar
  54. Gjedde A, Crone C. Blood-brain glucose transfer: repression in chronic hyperglycemia. Science. 1981; 214: 456–67.PubMedCrossRefGoogle Scholar
  55. Gonzalez-Flecha B. Oxidant mechanisms in response to ambient air particles. Mol Aspects Med. 2004; 25: 169–82.PubMedCrossRefGoogle Scholar
  56. Gorovits N, Charron MJ. What we know about facilitative glucose transporters. Lessons from cultured cells, animal models, and human studies. Biochem Mol Biol Educ. 2003; 31: 163–72.CrossRefGoogle Scholar
  57. Gosmanov AR, Stentz FB, Kitabchi AE. De novo emergence of insulin-stimulated glucose uptake in human aortic endothelial cells incubated with high glucose. Am J Physiol Endocrinol Metab. 2006; 290: E516–22.PubMedCrossRefGoogle Scholar
  58. Gregg EW, Yaffe K, Cauley JA, Rolka DB, Blackwell TL, Narayan KM, Cummings SR. Is diabetes associated with cognitive impairment and cognitive decline among older women? Arch Intern Med. 2000; 160: 174–80.PubMedCrossRefGoogle Scholar
  59. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith Jr SC, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999; 100: 1134–46.PubMedGoogle Scholar
  60. Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007; 3: 853–76.PubMedGoogle Scholar
  61. Halliwell B. Free-radicals and vascular-disease: how much do we know? Br Med J. 1993; 307: 885–6.Google Scholar
  62. Hardin CD, Paul RJ. Metabolism and energetics of vascular smooth muscle. In: Sperelakis N (ed.) Physiology and Pathophysiology of the Heart. Kluwer Academic, Dordrecht. 1995, 1069–86.Google Scholar
  63. Hardin CD, Roberts TM. Differential regulation of glucose and glycogen metabolism in vascular smooth muscle by exogenous substrates. J Mol Cell Cardiol. 1997; 29: 1207–16.PubMedCrossRefGoogle Scholar
  64. Harik SI, La Manna JC. Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia. J Neurochem. 1988; 51: 1924–9.PubMedCrossRefGoogle Scholar
  65. Hauguel-de-Mouzon S, Challier JC, Kacemi A, Cauzac M, Malek A, Girad J. The GLUT3 glucose transporter isoform is differentially expressed within human placental cell types. J Clin Endocrinol Metab. 1997; 82: 2689–94.PubMedCrossRefGoogle Scholar
  66. Hertz MM, Paulson OB, Barry DI, Christiansen JS, Svendsen PA. Insulin increases glucose transfer across the blood-brain-barrier in man. J Clin Invest. 1981; 67: 597–604.PubMedCrossRefGoogle Scholar
  67. Hingorani V, Brecher P. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels. Am J Physiol Endocrinol Metab. 1987; 252: E648–53.Google Scholar
  68. Howard RL. Down-regulation of glucose transport by elevated extracellular glucose concentrations in cultured rat aortic smooth muscle cells does not normalize intracellular glucose concentrations. J Lab Clin Med. 1996; 127: 504–15.PubMedCrossRefGoogle Scholar
  69. Jacob RJ, Fan X, Evans ML, Dziura J, Sherwin RS. Brain glucose levels are elevated in chronically hyperglycemic diabetic rats: no evidence for protective adaptation by the blood brain barrier. Metabolism. 2002; 51: 1522–4.PubMedCrossRefGoogle Scholar
  70. James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989; 338: 83–7.PubMedCrossRefGoogle Scholar
  71. Kahn AM, Lichtenberg RA, Allen JC, Seidel CL, Song T. Insulin stimulated glucose transport inhibits Ca2+ influx and contraction in vascular smooth muscle. Circulation. 1995; 92: 1597–1603.PubMedGoogle Scholar
  72. Kaiser N, Sasson S, Feener EP, Boukobzavardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993; 42: 80–9.PubMedCrossRefGoogle Scholar
  73. Kandror KV, Pilch PF. Compartmentalization of protein traffic in insulin-sensitive cells. Am J Physiol. 1996; 271: E1–14PubMedGoogle Scholar
  74. Kapitulnik J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol Pharmacol. 2004; 66: 7737–79.CrossRefGoogle Scholar
  75. Kihara S, Ouchi N, Funahashi T, Shinohara E, Tamura R, Yamashita S, Matuzawa Y. Troglitazone enhances glucose uptake and inhibits mitogen-activated protein kinase in human aortic smooth muscle cells. Atherosclerosis. 1998; 136: 163–8.PubMedCrossRefGoogle Scholar
  76. Klepper J, Wang D, Fischbarg J, Vera JC, Jartour IT, O’Driscoll KR, Devivo DC. Defective glucose transport across blood brain tissue barriers: a newly recognized neurological syndrome. Neurochem Res. 1999; 24: 587–94.PubMedCrossRefGoogle Scholar
  77. Knott RM, Robertson M, Muckersie E, Forrester JV. Regulation of glucose transporters (GLUT-1 and GLUT-3) in human retinal endothelial cells. Biochem J. 1996; 318: 313–7.PubMedGoogle Scholar
  78. Kreutzfeldt A, Spahr R, Mertens S, Siegmund B, Piper HM. Metabolism of exogenous substrates by coronary endothelial cells in culture. J Mol Cell Cardiol. 1990; 22: 1393–1404.CrossRefGoogle Scholar
  79. Kumagai AK. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev. 1999; 15: 261–73.PubMedCrossRefGoogle Scholar
  80. Kumagai AK, Glasgow BJ, Pardridge WM.Glut1 glucose transporter expression in the diabetic and nondiabetic human eye. Invest Ophthamol Vis Sci. 1994; 35: 2887–94.Google Scholar
  81. Kumagai AK, Kang YS, Boado RJ, Pardridge WM. Upregulation of blood-brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes. 1995; 44: 1399–1404.PubMedCrossRefGoogle Scholar
  82. Lee IK, Kim HS, Bae JH. Endothelial dysfunction: its relationship with acute hyperglycaemia and hyperlipidemia. Int J Clin Pract. 2002; Suppl.129: 59–64.Google Scholar
  83. Loike JD, Cao L, Brett J, Ogawa S, Silverstein SC, Stern D. Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol Cell Physiol. 1992; 263: C326–33.Google Scholar
  84. Lorenzi M, Cagliero E, Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985; 34: 621–7.PubMedCrossRefGoogle Scholar
  85. Machado UF, Schaan BD, Seraphim PM. Transportadores de glicose na síndrome metabólica. Arq Bras Endocrinol Metab. 2006; 50: 177–89.CrossRefGoogle Scholar
  86. MacKenzie CJ, Wakefield JM, Cairns F, Dominiczak AF, Gould GW. Regulation of glucose transport in aortic smooth muscle cells by cAMP and cGMP. Biochem J. 2001; 353: 513–9.PubMedCrossRefGoogle Scholar
  87. Mandarino LJ, Finlayson J, Hassell JR. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Invest Ophthamol Vis Sci. 1994; 35: 964–72.Google Scholar
  88. Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smoothe muscle cells. Physiol Rev. 2003; 83: 183–252.PubMedGoogle Scholar
  89. Mantych GJ, James DE, Devaskar SU. Jejunal kidney glucose transporter isoform (GLUT-5) is expressed in the human bloodbrain- barrier. Endocrinology. 1993a; 132: 35–40.Google Scholar
  90. Mantych GJ, Hageman GS, Devastu SU. Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology. 1993b; 133: 600–7.Google Scholar
  91. Marcus RG, England R, Nguyen K, Charron MJ, Briggs JP, Brosius FC3. Altered renal expression of the insulin-responsive glucose transporter GLUT4 in experimental diabetes mellitus. Am J Physiol. 1994; 267: 816–24.Google Scholar
  92. Matthaei S, Hamann A, Klein HH, Benecke H, Krey-Mann G, Flier JS, Greten H. Association of metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulininduced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes. 1991; 40: 850–7.PubMedCrossRefGoogle Scholar
  93. McCall AL, Millington WR, Wurtman RJ. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Natl Acad Sci USA. 1982; 79: 5406–10.PubMedCrossRefGoogle Scholar
  94. McCall AL, Gould JB, Ruderman NB. Diabetes-induced alterations of glucose metabolism in rat cerebral microvessels. Am J Physiol. 1984; 247: E462–7.PubMedGoogle Scholar
  95. McCall AL, Fixman LB, Fleming N, Tornheim K, Chick W, Ruderman NB. Chronic hypoglycemia increases brain glucose transport. Am. J. Physiol. 1986; 251: E442–7.PubMedGoogle Scholar
  96. McCall AL, Van Bueren AM, Huang L, Stenbit A, Celnik E, Charron MJ. Forebrain endothelium expresses GLUT4, the insulin responsive glucose transporter. Brain Res. 1997; 744: 318–26.PubMedCrossRefGoogle Scholar
  97. Mertens S, Noll T, Spahr R, Kruetzfeldt A, Piper HM. Energetic response of coronary endothelial cells to hypoxia. Am J Physiol Heart Circ Physiol. 1990; 258: H689–94.Google Scholar
  98. Mooradian AD, Morin AM, Cipp LJ, Haspel HC. Glucose transport is reduced in the blood-brain barrier of aged rats. Brain Res. 1991; 551: 145–59.PubMedCrossRefGoogle Scholar
  99. Namba H, Lucignani G, Nehlig A, Patlak C, Pettigrew K, Kennedy C, Sokoloff L. Effects of insulin on hexose transport across blood-brain-barrier in normoglycemia. Am J Physiol Endocrinol Metab. 1987; 252: E299–303.Google Scholar
  100. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000; 404: 787–90.PubMedCrossRefGoogle Scholar
  101. Nitenberg A, Cosson E, Pham I. Postprandial endothelial dysfunction: role of glucose, lipids and insulin. Diabetes Metab. 2006; 32 (Spec No. 2): S28–33.Google Scholar
  102. O’Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev. 1996; 76: 1109–61.PubMedGoogle Scholar
  103. Pan M, Wasa M, Souba WW. Tumor necrosis factor stimulates system x - AG transport activity in human endothelium. J Surg Res. 1995; 58: 659–64.PubMedCrossRefGoogle Scholar
  104. Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem. 1990a; 256: 18035–40.Google Scholar
  105. Pardridge WM, Triguero D, Farrell CR. Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes. 1990b; 39: 1040–4.Google Scholar
  106. Park JL, Loberg RD, Duquaine D, Zhang H, Deo BK, Ardanaz N, et al. GLUT4 facilitative glucose transporter specifically and differentially contributes to agonist induced vascular reactivity in mouse aorta. Arterioscler Thromb Vasc Biol. 2005; 25: 1596–602.PubMedCrossRefGoogle Scholar
  107. Parke DV, Sapota A. Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health. 1996; 9: 331–40.PubMedGoogle Scholar
  108. Parra M, Yudilevich DL, Mann GE, Pedley KC, Nicolaides K, Pearson JD, Sobrevia L. Modulation of glucose transport in human fetal vein endothelial cells. J Physiol. 1998; 506: 34–5.Google Scholar
  109. Paulson OB, Hasselbalch SG. Blood-brain barrier transport of glucose: adaptation to changes in blood glucose levels. Nutr Metab Cardiovasc Dis. 1997; 7: 217–24.Google Scholar
  110. Pekala P, Marlow M, Heuvelman D, Connoly D. Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor-α, but not by insulin. J Biol Chem. 1990; 265: 18051–4.PubMedGoogle Scholar
  111. Pelligrino DA, LaManna JC, Duckrow RB, Bryan RM, Harik SI. Hyperglycemia and blood-brain barrier glucose transport. J Cereb Blood Flow Metab. 1992; 12: 887–99.PubMedGoogle Scholar
  112. Pessler D, Rudich A, Bashan N. Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia. 2001; 44: 2156–64.PubMedCrossRefGoogle Scholar
  113. Pouliot JF, Beliveau R. Palmitoylation of the glucose transporter in blood-brain barrier capillaries. Biochim Biophys Acta. 1995; 1234: 191–6.PubMedCrossRefGoogle Scholar
  114. Quinn LA, McCumbee WD. Regulation of glucose transport by angiotensin II and glucose in cultured vascular smooth muscle cells. J Cell Physiol. 1998; 177: 94–102.PubMedCrossRefGoogle Scholar
  115. Rebolledo OR, Actis Dato SM. Postprandial hyperglycemia and hyperlipidemia-generated glycoxidative stress: its contribution to the pathogenesis of diabetes complications. Eur Rev Med Pharmacol Sci. 2005; 9: 191–208.PubMedGoogle Scholar
  116. Regina A, Roux F, Revest PA. Glucose transport in immortalized rat brain capillary endothelial cells in vitro: transport activity and GLUT1 expression. Biochim Biophys Acta. 1997; 1335: 135–43.PubMedGoogle Scholar
  117. Sasson S, Gorowits N, Joost HG, King GL, Cerasi E, Kaiser N. Regulation by metformin of the hexose transport system in vascular endothelial and smooth muscle cells. Br J Pharmacol. 1996; 117: 1318–24.PubMedGoogle Scholar
  118. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005; 109: 143–59.CrossRefGoogle Scholar
  119. Shepherd PR, Kahn BB. Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999; 341: 248–57.PubMedCrossRefGoogle Scholar
  120. Slot JW, Moxley R, Geuze HJ, James DE. No evidence for expression of the insulin-regulatable glucose transporter in endothelial cells. Nature. 1990; 346: 369–71.PubMedCrossRefGoogle Scholar
  121. Sobrevia L, Mann GE. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp Physiol. 1997; 82: 423–52.PubMedGoogle Scholar
  122. Sone H, Deo BK, Kumagai AK. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci. 2000; 41: 1876–84.PubMedGoogle Scholar
  123. Standley PR, Rose KA. Insulin and insulin-like growth factor-1 modulation of glucose transport in arterial smooth muscle cells: implication of GLUT-4 in the vasculature. Am J Hypertens. 1994; 7: 357–62.PubMedGoogle Scholar
  124. Stenina OI. Regulation of vascular genes by glucose. Curr Pharm Des. 2005; 11: 2367–81.PubMedCrossRefGoogle Scholar
  125. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Br Med J. 2000; 321:405–12.CrossRefGoogle Scholar
  126. Tada H, Thompson CI, Recchia FA, Loke KE, Ochoa M, Smith CJ, Shelsely EG, Kaley G, Hintze TH. Myocardial glucose uptake is regulated via endothelial nitric oxide synthase in Langendorff mouse heart. Circ Res. 2000; 86: 270–4.PubMedGoogle Scholar
  127. Takagi H, King GL, Aiello LP. Hypoxia upregulates glucose transport activity through an adenosine-mediated increase in GLUT1 expression in retinal capillary endothelial cells. Diabetes. 1998; 47: 1480–8.PubMedCrossRefGoogle Scholar
  128. Takakura Y, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin. Biochim Biophys Acta. 1991; 1070: 1–10.PubMedCrossRefGoogle Scholar
  129. Takata K, Hirano H, Kasahara M. Transport of glucose across the blood-tissue barriers. Int Rev Cytol. 1997; 172: 1–53.PubMedCrossRefGoogle Scholar
  130. Tao F, Gonzalez-Flecha B, Kobzik L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med. 2003; 35: 327–40.PubMedCrossRefGoogle Scholar
  131. Taylor R, Agius L. The biochemistry of diabetes. Biochem J. 1988; 250: 625–50.PubMedGoogle Scholar
  132. Thomas J, Linssen M, Van Der Vusse GJ, Hirsch B, Rosen P, Kammermeier H, Fischer Y. Acute stimulation of glucose transport by histamine in cardiac microvascular endothelial cells. Biochim Biophys Acta. 1995; 1268: 88–96.PubMedCrossRefGoogle Scholar
  133. Thornalley PJ, McLellan AC, Lo TW, Benn J, Sonksen PH. Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci (Lond). 1996; 91: 575–82.Google Scholar
  134. Totary-Jain H, Naveh-Many T, Riahi Y, Kaiser N, Eckel J, Sasson S. Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res. 2005; 97: 1001–8.PubMedCrossRefGoogle Scholar
  135. Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, Kimura I, Sasaoka T. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol. 2007; 566: 1–10.PubMedCrossRefGoogle Scholar
  136. Vilaro S, Palacín M, Pilch PF, Testar X, Zorzano A. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells. Nature. 1989; 342: 798–800.PubMedCrossRefGoogle Scholar
  137. Viñals F, Gross A, Testar X, Palacín M, Rosen P, Zorzano A. High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells. Biochim Biophys Acta. 1999; 1450: 119–29.PubMedCrossRefGoogle Scholar
  138. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004; 25: 612–28.PubMedCrossRefGoogle Scholar
  139. Wei M, Gaskill SP, Haffner SM, Stern MP. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care. 1998; 21: 1167–72.Google Scholar
  140. Wiernsperger N, Nivoit P, De Aguiar LG, Bouskela E. Microcirculation and the metabolic syndrome. Microcirculation. 2007; 14: 403–38.PubMedCrossRefGoogle Scholar
  141. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT1): expanded families of sugar transport proteins. Br J Nutr. 2003; 89: 3–9.PubMedCrossRefGoogle Scholar
  142. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007; 261: 32–43.PubMedCrossRefGoogle Scholar
  143. Yamagishi SI, Nakamura K, Matsui T, Ueda SI, Imaizumi T. Role of postprandial hyperglycaemia in cardiovascular disease in diabetes. Int J Clin Pract. 2007; 61: 83–7.PubMedCrossRefGoogle Scholar
  144. Yu Y, Lyons TJ. A lethal tetrad in diabetes: hyperglycemia, dyslipidemia, oxidative stress, and endothelial dysfunction. Am J Med Sci. 2005; 330: 227–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Fatima Martel
    • 1
  • Elisa Keating
    • 2
  1. 1.Department of Biochemistry (U38-FCT), Faculty of MedicineUniversity of Porto, Al. Prof. Hernâni MonteiroPortoPortugal
  2. 2.Department of Biochemistry (U38-FCT), Faculty of MedicineUniversity of Porto, Al. Prof. Hernâni MonteiroPortoPortugal

Personalised recommendations