Skip to main content

Increased Dietary Breadth in Early Hominin Evolution: Revisiting Arguments and Evidence with a Focus on Biogeochemical Contributions

  • Chapter
The Evolution of Hominin Diets

Increases in dietary breadth have been associated with hominin origins and the development of the genus Homo. For the former, researchers such as Dart noted that the environments associated with australopiths were not conducive for frugivorous diets like those of our closest living relatives the chimpanzees. Thus, many early arguments for increased dietary breadth were largely driven by perceived environmental constraints on diet. In contrast, the arguments for increased dietary breadth in early Homo have focused on explicating its high degree of encephalization. Biogeochemical evidence supports these ideas to varying extents. Trace element data have been used to argue for the increased utilization of animal foods among australopiths. We argue, however, that these data are equivocal and may be more consistent with the consumption of plant foods such as underground storage organs and grass seeds. Carbon isotope analysis demonstrates that australopith diets were characterized by great variability, and a tendency to consume C4 resources such as grasses, sedges, and/or animals eating these foods. This contrasts with what has been observed in chimpanzees, which exhibit little variability and do not appear to consume significant quantities of C4 resources even when such resources are locally abundant. Biogeochemistry has revealed little about the diets of early Homo, although there are data suggesting that it consumed some C4 resources, possibly in the form of underground storage organs. At present, our best evidence for increases in dietary breadth in early Homo comes from the archaeological record and physiologically based models for encephalization. We surmise that increased meat consumption among early Homo was not in and of itself responsible for a leap in dietary quality, but rather that it served as a dietary release allowing consumption of more abundant energy-rich foods with protein of lower biological value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello, L.C., Wheeler, P., 1995. The expensive tissue hypothesis. Current Anthropology 36, 199–221.

    Article  Google Scholar 

  • Allee, W.C., Emerson, A.E., Park, O., Park, T., Schmidt, K.P., 1949. Principles of Animal Ecology. WB Saunders, Philadelphia.

    Google Scholar 

  • Begon, M., Harper, J., Townsend, C.R., 1990. Ecology: Individuals, Populations and Communities. Blackwell, London.

    Google Scholar 

  • Blumenschine, R.J., 1991. Early hominid carnivory and foraging strategies. Philosophical Transactions of the Royal Society of London B 334, 211–221.

    Article  Google Scholar 

  • Bonnefille, R., 1976. Palynological evidence for an important change in the vegetation of the Omo basin between 2.5 and 2.0 million years. In: Coppen, Y., Howell, F.C., Isaac, G.L.L., Leakey, R.E.F. (Eds.), Earliest Man and Environments in the Lake Rudolf Basin. University of Chicago Press, Chicago, pp. 421–430.

    Google Scholar 

  • Bowen, H.J.M., Dymond, J.A., 1955. Strontium and barium in plants and soils. Philosophical Transactions of the Royal Society of London B 144, 355–368.

    Google Scholar 

  • Brain, C.K., 1958. The transvaal ape-man-bearing cave deposits. Transvaal Museum Memoir 11, 1–131.

    Google Scholar 

  • Brain, C.K., 1967. Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific Papers of the Namib Desert Research Station 32, 1–11.

    Google Scholar 

  • Brain, C.K., 1969. The contribution of Namib Desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station 39, 13–22.

    Google Scholar 

  • Brain, C.K., 1981. The Hunters or the Hunted? University of Chicago Press, Chicago.

    Google Scholar 

  • Broadhurst, C.L., Wang, Y., Crawford, M.A., Cunnane, S.C., Parkington, J.E., Schmidt, W., 1998. Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. British Journal of Nutrition 79, 3–21.

    Article  Google Scholar 

  • Broadhurst, C.L., Wang, Y., Crawford, M.A., Cunnane, S.C., Parkington, J.E., Schmidt, W.F., 2002. Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comparative Biochemistry and Physiology Part B 131, 653–673.

    Article  Google Scholar 

  • Budd, P., Montgomery, J., Barreiro, B., Thomas, R.G., 2000. Differential diagenesis of strontium in archaeological human tissues. Applied Geochemistry 15, 687–694.

    Article  Google Scholar 

  • Burton, J.H., Price, T.D., Middleton, W.D., 1999. Correlation of Bone Ba/Ca and Sr/Ca due to Biological Purification of Calcium. Journal of Archaeological Science 26, 609–616.

    Article  Google Scholar 

  • Clarke, R.J., Tobias, P.V., 1995. Sterkfontein Member 2 foot bones of the oldest South African hominid. Science 269, 521–524.

    Article  Google Scholar 

  • Codron, D., Lee-Thorp, J.A., Sponheimer, M., De Ruiter, D., Codron, J., 2005. Utilization of Savanna-based resources by Plio-Pleistocene baboons. South African Journal of Science. 101, 245–249.

    Google Scholar 

  • Conklin-Brittain, N.L., Wrangham, R.W, Hunt, K.D., 1998. Response of chimpanzees and Cercopithecines to seasonal variation in fruit abundance. II. Macronutrients. International Journal of Primatology 19, 971–998.

    Article  Google Scholar 

  • Conklin-Brittain, N.L., Wrangham, R.W., Smith, C.C., 2002. A twostage model of increased dietary quality in early hominid evolution: the role of fiber. In: Ungar, P.S., Teaford, M.F. (Eds.), Human Diet: Its Origin and Evolution. Bergin & Garvey, Westport, pp. 61–76.

    Google Scholar 

  • Dart, R., 1925. Australopithecus africanus, the man-ape of South Africa. Nature 115, 195–199.

    Article  Google Scholar 

  • Dart, R.A., 1926. Taungs and its significance. Natural History 26, 315–327.

    Google Scholar 

  • Dart, R., 1948. The adolescent mandible of Australopithecus prometheus. American Journal of Physical Anthropology 6, 391–412.

    Article  Google Scholar 

  • Dart, R.A., 1957. The Osteodontokeratic culture of Australopithecus prometheus. Transvaal Museum Memoir 10, 1–105.

    Google Scholar 

  • Darwin, C., 1871. The Descent of Man. Modern Library, New York.

    Google Scholar 

  • Delson, E., 1984. Cercopithecid biochronology of the African Plio-Pleistocene: correlation among eastern and southern hom-inid-bearing localities. Courier Forschungsinstitut Senckenberg 69, 199–218.

    Google Scholar 

  • Doran, D.M., McNeilage, A., 1998. Gorilla ecology and behavior. Evolutionary Anthropology 6, 120–131.

    Article  Google Scholar 

  • Dufour, D.L., 1987. Insects as food: a case study from the Northwest Amazon. American Anthropologist 89, 383–397.

    Article  Google Scholar 

  • Dunbar, R.I.M., 1976. Australopithecine diet based on a baboon analogy. Journal of Human Evolution 5, 161–167.

    Article  Google Scholar 

  • Fleagle, J.G., 1999. Primate Adaptation and Evolution, Second Edition. Academic Press, New York.

    Google Scholar 

  • Goodall, J., 1986. The Chimpanzees of Gombe. Cambridge University Press, Cambridge.

    Google Scholar 

  • Goodman, M., 1963. Serological analysis of the systematics of recent hominoids. Human Biology 35, 377–436.

    Google Scholar 

  • Grine, F.E., 1981. Trophic differences between gracile and robust aus-tralopithecines. South African Journal of Science 77, 203–230.

    Google Scholar 

  • Grine, F.E., Kay, R., 1988. Early hominid diets from quantitative image analysis of dental microwear. Nature 333, 765–768.

    Google Scholar 

  • Grine, F.E., Ungar, P.S., Teaford, M.F., El-Zaatari, S., 2006. Molar microwear in Praeanthropus afarensis: evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution 51, 297–319.

    Article  Google Scholar 

  • Haghiri, F., 1964. Strontium-90 accumulation in some vegetable crops. Ohio Journal of Science 64, 371–375.

    Google Scholar 

  • Haines, P.S., Siega-Riz, A.A., Popkin, B.M., 1999. The diet quality index revisited: a measurement instrument for populations. Journal of the American Dietetic Association 99, 697–704.

    Article  Google Scholar 

  • Hart, J.A., 1985. Comparative dietary ecology of a community of frugivorous forest ungulates in Zaire (ruminants, feeding habits, rainforest). Ph.D. dissertation, Michigan State University, East Lansing, Michigan.

    Google Scholar 

  • Hatley, T., Kappelman, J., 1980. Bears, pigs, and Plio-Pleistocene hominids: case for exploitation of belowground food resources. Human Ecology 8, 371–387.

    Article  Google Scholar 

  • Hladik, C.M., Chivers, D.J., Pasquet, P., 1999. On diet and gut size in non-human primates and humans: is there a relationship to brain size? Current Anthropology 40, 695–697.

    Article  Google Scholar 

  • Hoppe, K.A., Koch, P.L., Furutani, T.T., 2003. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology 13, 20–28.

    Article  Google Scholar 

  • IOM., 2005. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. National Academies Press, Washington, DC.

    Google Scholar 

  • Isaac, G.L., 1983. Bones in contention: competing explanations for the juxtaposition of Early Pleistocene artifacts and faunal remains. In: Clutton-Brock, J., Grigson, C. (Eds.), Animals and Archaeology 1. Hunters and their Prey. B.A.R. International Series 163, Oxford, 3–19.

    Google Scholar 

  • Jaeger, J.J., Wesselman, H.B., 1976. Fossil remains of micromam-mals from the Omo group deposits. In: Coppens, Y., Howell, F.C., Isaac, G.L.L., Leakey, R.E.F. (Eds.), Earliest Man and Environments in the Lake Rudolf Basin. University of Chicago Press, Chicago, pp. 351–360.

    Google Scholar 

  • Jolly, C.J., 2001. A proper study for mankind: analogies from the Papionin monkeys and their implications for human evolution. American Journal of Physical Anthropology 116, 177–204.

    Article  Google Scholar 

  • Kant, A.K., 1996. Indexes of overall dietary quality: a review. Journal of the American Dietetic Association 96, 785–791.

    Article  Google Scholar 

  • Kay, R., 1985. Dental evidence for the diet of Australopithecus. Annual Review of Anthropology 14, 315–341.

    Article  Google Scholar 

  • Kostial, K., Gruden, N., Durakovic, A., 1969. Intestinal absorption of calcium-47 and strontium-85 in lactating rats. Calcified Tissue International 4, 13–19.

    Article  Google Scholar 

  • Laden, G., Wrangham, R., 2005. The rise of the hominids as an adaptive shift in fallback foods: plant underground storage organs (USOs) and australopith origins. Journal of Human Evolution 49, 482–498.

    Article  Google Scholar 

  • Landry, S.O., Jr., 1970. The Rodentia as omnivores. Quarterly Review of Biology 45 (4), 351–372.

    Article  Google Scholar 

  • Laughlin, W.S., 1968. Hunting: An Integrating Biobehavior System and Its Evolutionary Importance. Man the Hunter. Aldine, Chicago pp. 304–320.

    Google Scholar 

  • Lee-Thorp, J., Sponheimer, M., 2003. Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for Paleodietary studies. Journal of Anthropological Archaeology 22, 208–216.

    Article  Google Scholar 

  • Lee-Thorp, J.A., van der Merwe, N.J., Brain, C.K., 1989. Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution 18, 183–190.

    Article  Google Scholar 

  • Lee-Thorp, J.A., van der Merwe, N.J., Brain, C.K., 1994. Diet of Australopithecus robustus at Swartkrans from stable carbon iso-topic analysis. Journal of Human Evolution 27, 361–372.

    Article  Google Scholar 

  • Lee-Thorp, J.A., Thackeray, J.F., van der Merwe, N.J., 2000. The hunters and the hunted revisited. Journal of Human Evolution 39, 565–576.

    Article  Google Scholar 

  • Leonard, W.R., Robertson, M., 1991. Nutritional requirements and human evolution: a bioenergetics model. American Journal of Human Biology 4, 179–195.

    Article  Google Scholar 

  • Leonard, W.R., Robertson, M., 1994. Evolutionary perspectives on human nutrition: the influence of brain and body size on diet and metabolism. American Journal of Human Biology 6, 77–88.

    Article  Google Scholar 

  • McGrew, W.C., Baldwin, P.J., Tutin, C.E.G., 1981. Chimpanzees in a hot, dry and open habitat: Mt. Assirik, Senegal, West Africa. Journal of Human Evolution 10, 227–244.

    Article  Google Scholar 

  • McGrew, W.C., Sharman, M.J., Baldwin, P.J., Tutin, C.E.G., 1982. On early hominid plant-food niches. Current Anthropology 23, 213–214.

    Google Scholar 

  • Milton, K, 1987. Primate diets and gut morphology: implications for human evolution. In: Harris, M., Ross, E.B. (Eds.), Food and Evolution: Toward a Theory of Human Food Habits. Temple Press, Philadelphia, pp. 93–116.

    Google Scholar 

  • Milton, K., 1999. A hypothesis to explain the role of meat-eating in human evolution. Evolutionaty Anthropology 8, 11–21.

    Article  Google Scholar 

  • Moore, J., 1996. Savanna chimpanzees, referential models and the last common ancestor. In: McGrew, W.C, Marchant, L.F., Nishida, T. (Eds.), Great Ape Societies. Cambridge University Press, Cambridge, pp. 275–292.

    Chapter  Google Scholar 

  • Murphy, S.P., Allen, L.H., 2003. Nutritional importance of animal source foods. Journal of Nutrition 133, 3932S–3925S.

    Google Scholar 

  • NRC., 2003. Nutrient Requirements of Nonhuman Primates. Second Revised Edition. National Academies Press, Washington, DC.

    Google Scholar 

  • O'Brien, T.G., Kinnaird, M.F., Dierenfeld, E.S., Conklin-Brittain, N.L., Wrangham, R.W., Silver, S.C., 1998. What's special about figs. Nature 392, 668.

    Article  Google Scholar 

  • O'Connell,J.F., Hawkes,K., Blurton Jones,N.G., 1999. Grandmothering and the evolution of Homo erectus. Journal of Human Evolution 36, 461–485.

    Article  Google Scholar 

  • Peters, C.R., Vogel, J.C., 2005. Africa's wild C4 plant foods and possible early hominid diets. Journal of Human Evolution 48, 219–236.

    Article  Google Scholar 

  • Pianka, E.R., 1974. Evolutionary Ecology. Harper & Row, New York.

    Google Scholar 

  • Reed, K.E., 1997. Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution 32, 289–322.

    Article  Google Scholar 

  • Robbins, C.T., 1993. Wildlife Feeding and Nutrition. Academic Press, New York.

    Google Scholar 

  • Robinson, J.T., 1954. Prehominid dentition and hominid evolution. Evolution 8, 324–334.

    Article  Google Scholar 

  • Rogers, A.W., 1922. Post-cretaceous climates of South Africa. South African Journal of Science 19, 233–239.

    Google Scholar 

  • Runia, L.J., 1987. Strontium and calcium distribution in plants: effect on paleodietary studies. Journal of Archaeological Science 14, 599–608.

    Article  Google Scholar 

  • Sarich, V.M., Wilson, A.C., 1967. Immunological time scale for hominid evolution. Science 158, 1200–1203.

    Article  Google Scholar 

  • Schoeninger, M.J., Moore, J., Sept, M., 1999. Subsistence strategies of two “savanna” chimpanzee populations: the stable isotope evidence. American Journal of Primatology 49, 297–314.

    Article  Google Scholar 

  • Scott, R.S., Ungar, P.S., Bergstrom, T.S., Brown, C.A., Grine, F.E., Teaford, M.F., and Walker, A., 2005. Dental microwear texture analysis shows within-species dietary variability in fossil hominins. Nature 436, 693–695.

    Article  Google Scholar 

  • Shipman, P., Walker, A., 1989. The costs of becoming a predator. Journal of Human Evolution 18, 373–392.

    Article  Google Scholar 

  • Sillen, A., 1981. Strontium and diet at Hayonim Cave, Israel: an evaluation of the strontium/calcium technique for investigating prehistoric diets. Ph.D. Dissertation, University of Pennsylvania.

    Google Scholar 

  • Sillen, A., 1988. Elemental and isotopic analyses of mammalian fauna from Southern Africa and their implications for paleodietary research. American Journal of Physical Anthropology 76, 49–60.

    Article  Google Scholar 

  • Sillen, A., 1992. Strontium-Calcium ratios (Sr/Ca) of tralopithecus robustus and associated fauna from Swartkrans. Journal of Human Evolution 23, 495–516.

    Article  Google Scholar 

  • Sillen, A., Hall, G., Armstrong, R., 1995. Strontium calcium ratios (Sr/ Ca) and strontium isotopic ratios (87Sr/86Sr) of Australopithecus robustus and Homo sp. from Swartkrans. Journal of Human Evolution 28, 277–285.

    Article  Google Scholar 

  • Smith, B.N., Epstein, S., 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47, 380–384.

    Article  Google Scholar 

  • Smith, G.E., 1924. The Evolution of Man: Essays. Oxford University Press, Oxford.

    Google Scholar 

  • Spencer, H., Warren, J.M., Kramer, L., Samachson, J., 1973. Passage of calcium and strontium across the intestine in man. Clinical Orthopaedics and Related Research 91, 225–234.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J.A., 1999. Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science 283, 368–370.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J., DeRuiter, D, Smith, J., van der Merwe, N., Reed, K., Ayliffe, L., Heidelberger, C. & Marcus, W. (2003). Diets of Southern African Bovidae: The Stable Isotope Evidence. Journal of Mammalogy 84: 471–479.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J.A., 2006. Enamel diagenesis at South African australopith sites: implications for Paleoecological reconstruction with trace elements. Geochimica et Cosmochimica Acta 70, 1644–1654.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J., de Ruiter, D., Codron, D., Codron, J., Baugh, A.T., Thackeray, F., 2005a. Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution 48, 301–312.

    Article  Google Scholar 

  • Sponheimer, M., de Ruiter, D, Lee-Thorp, J., Späth, A., 2005b. Sr/ Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution 48, 147–156.

    Article  Google Scholar 

  • Sponheimer, M., Loudon, J.E., Codron, D., Howells, M.E., Pruetz, J.D., Codron, J., de Ruiter, D., Lee-Thorp, J.A., 2006. Do “Savanna” Chimpanzees Consume C4 resources? Journal of Human Evolution 51, 128–133.

    Article  Google Scholar 

  • Stanford, C.B., 1996. The hunting ecology of wild chimpanzees: implications for the evolutionary ecology of Pliocene hominids. American Anthropologist 98, 96–113.

    Article  Google Scholar 

  • Stern, J., Susman, R., 1983. The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology 60, 279–317.

    Article  Google Scholar 

  • Strum, S.C., 1987. Almost Human: A Journey into the World of Baboons. Random House, New York.

    Google Scholar 

  • Teaford, M.F., Ungar, P.S., Grine, F.E., 2002. Paleontological evidence for the diets of African Plio-Pleistocene hominins with special reference to early Homo. In: Ungar, P.S., Teaford, M.F. (Eds.), Human Diet: Its Origin and Evolution. Bergin and Garvey, Westport, pp. 143–166.

    Google Scholar 

  • Tieszen, L.L., Hein, D., Qvortrup, S.A., Troughton, J.H., Imbamba, S.K., 1979. Use of d13C values to determine vegetation selectivity in East African herbivores. Oecologia 37, 351–359.

    Article  Google Scholar 

  • Tiger, L., Fox, R., 1971. The Imperial Animal. Transaction Pubications, New York.

    Google Scholar 

  • Tooby, J., DeVore, I., 1987. The reconstruction of hominid behavioral evolution through strategic modeling. In: Kinzey, W.G. (Ed.), The Evolution of Human Behavior: Primate Models, State University of New York Press, Albany, pp. 183–238.

    Google Scholar 

  • Ungar, P., 2004. Dental topography and diets of Australopithecus afa-rensis and early Homo. Journal of Human Evolution 46, 605–622.

    Article  Google Scholar 

  • van der Merwe, N.J., Thackeray, J.F., Lee-Thorp, J.A., Luyt, J., 2003. The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. Journal of Human Evolution 44, 581–597.

    Article  Google Scholar 

  • Vogel, J.C., 1978. Isotopic assessment of the dietary habits of ungulates. South African Journal of Science 74, 298–301.

    Google Scholar 

  • Vogel, J.C., Fuls, A., Ellis, R.P., 1978. The geographical distribution of kranz grasses in South Africa. South African Journal of Science 74, 209–215.

    Google Scholar 

  • Vrba, E., 1975. Some evidence of chronology and palaeoecology of Sterkfontein, Swartkrans and Kromdraai from the fossil Bovidae. Nature 254, 301–304.

    Article  Google Scholar 

  • Vrba, E.S., 1979. A new study of the scapula of Australopithecus africanus from Sterkfontein. American Journal of Physical Anthropology 51, 117–130.

    Article  Google Scholar 

  • Vrba, E.S., 1980. The significance of bovid remains as indicators of environment and predation patterns. In: Behrensmeyer, A.K., Hill, A.P. (Eds.), Fossils in the Making. University of Chicago Press, Chicago, pp. 247–272.

    Google Scholar 

  • Walker, A., 1981. Diet and teeth — dietary hypotheses and human evolution. Philosophical Transactions of the Royal Society of London B 292, 57–64.

    Article  Google Scholar 

  • Wang, Y., Cerling, T., 1994. A model of fossil tooth and bone dia-genesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography Palaeoclimatology Palaeoecology 107, 281–289.

    Article  Google Scholar 

  • Washburn, S.L., DeVore, I., 1961. Social behavior of baboons and early man. In: Washburn, S. (Ed.), Social Life of Early Man. Methuen, London, pp. 91–105.

    Google Scholar 

  • Washburn, S.L., Lancaster, C.S., 1968. The evolution of hunting. In: Lee, R.B., Devore, I. (Eds.), Man the Hunter. Aldine, Chicago, pp. 293–303.

    Google Scholar 

  • WoldeGabriel, G., White, T.D., Suwa, G., Renne, P., de Heinzelln, J., Hart, W.K., Helken, G., 1994. Ecological and temporal placement of early Pliocene hominids at Aramis, Ethiopia. Nature 371, 330–333.

    Article  Google Scholar 

  • Wrangham, R.W., James, J.H., Laden, G., Pilbeam, D., Conklin-Brittain, N., 1999. The raw and the stolen: cooking and the ecology of human origins. Current Anthropology 40 (5), 567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sponheimer, M., Dufour, D.L. (2009). Increased Dietary Breadth in Early Hominin Evolution: Revisiting Arguments and Evidence with a Focus on Biogeochemical Contributions. In: Hublin, JJ., Richards, M.P. (eds) The Evolution of Hominin Diets. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9699-0_18

Download citation

Publish with us

Policies and ethics