Skip to main content

Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections

  • Chapter
Diseases of Mites and Ticks

Abstract

Antimicrobial peptides, including defensins, are components of the innate immune system in ticks that have been shown to provide protection against both gram-negative and gram-positive bacteria. Varisin, one of the defensins identified in Dermacentor variabilis, was shown to be produced primarily in hemocytes but transcript levels were also expressed in midguts and other tick cells. In this research, we studied the role of varisin in the immunity of ticks to the gram-negative cattle pathogen, Anaplasma marginale. Expression of the varisin gene was silenced by RNA interference (RNAi) in which male ticks were injected with varisin dsRNA and then allowed to feed and acquire A. marginale infection on an experimentally-infected calf. Silencing expression of varisin in hemocytes, midguts and salivary glands was confirmed by real time RT-PCR. We expected that silencing of varisin would increase A. marginale infections in ticks, but the results demonstrated that bacterial numbers, as determined by an A. marginale msp4 quantitative PCR, were significantly reduced in the varisin-silenced ticks. Furthermore, colonies of A. marginale in ticks used for RNAi were morphologically abnormal from those seen in elution buffer injected control ticks. The colony shape was irregular and in some cases the A. marginale appeared to be free in the cytoplasm of midgut cells. Some ticks were found to be systemically infected with a microbe that may have been related to the silencing of varisin. This appears to be the first report of the silencing of expression of a defensin in ticks by RNAi that resulted in reduced A. marginale infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boulanger N, Munks RJ, Hamilton JV, Vovelle F, Brun R, Lehane MJ et al (2002) Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 277:49921–49926. doi:10.1074/jbc.M206296200

    Article  PubMed  CAS  Google Scholar 

  • Ceraul SM, Sonenshine DE, Ratzlaff RE, Hynes WL (2003) An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). Insect Biochem Mol Biol 33:1099–1103. doi:10.1016/S0965-1748(03) 00122-X

    Article  PubMed  CAS  Google Scholar 

  • Ceraul SM, Dreher-Lesnick S, Gillespie JJ, Sayeedur Rahman M, Azad AF (2007) A new tick defensin isoform and antimicrobial gene expression in response to Rickettsia montanensis challenge. Infect Immun 75:1973–1983. doi:10.1128/IAI.01815-06

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente J, Garcia-Garcia JC, Blouin EF, Kocan KM (2001) Major surface protein 1a effects tick infection and transmission of the ehrlichial pathogen Anaplasma marginale. Int J Parasitol 31:1705–1714. doi:10.1016/S0020-7519(01) 00287-9

    Article  Google Scholar 

  • de la Fuente J, Ayoubi P, Blouin EF, Almazán C, Naranjo V, Kocan KM (2005) Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell Microbiol 7:549–559. doi:10.1111/j.1462-5822.2004.00485.x

    Article  CAS  Google Scholar 

  • de la Fuente J, Almazán C, Blouin EF, Naranjo V, Kocan KM (2006a) Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol Res 100:85–89. doi:10.1007/s00436-006-0244-6

    Article  Google Scholar 

  • de la Fuente J, Almazán C, Blas-Machado U, Naranjo V, Mangold AJ, Blouin EF et al (2006b) The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine 24:4082–4095. doi:10.1016/j.vaccine.2006.02.046

    Article  CAS  Google Scholar 

  • de la Fuente J, Blouin EF, Manzano-Roman R, Naranjo V, Almazán C, Pérez de la Latra JM et al (2007a) Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics 90:712–722. doi:10.1016/j.ygeno.2007.08.009

    Article  CAS  Google Scholar 

  • de la Fuente J, Manzano-Roman R, Blouin EF, Naranjo V, Kocan KM (2007b) Sp110 transcription is induced and required by Anaplasma phagocytophilum for infection of human promyelocytic cells. BMC Infect Dis 7:110. doi:10.1186/1471-2334-7-110

    Article  CAS  Google Scholar 

  • de la Fuente J, Kocan KM, Almazán C, Blouin EF (2007c) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23:427–433. doi:10.1016/j.pt.2007.07.002

    Article  CAS  Google Scholar 

  • Dreher-Lesnick SM, Mulenga A, Simser JA, Azad AF (2006) Differential expression of two glutathione S-transferases identified from the American dog tick, Dermacentor variabilis. Insect Mol Biol 15:445–453. doi:10.1111/j.1365-2583.2006.00657.x

    Article  PubMed  CAS  Google Scholar 

  • Dumler JS, Barbet AC, Bekker CPJ, Dasch GA, Palmer GH, Ray SC et al (2001) Reorganization of the genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165

    PubMed  CAS  Google Scholar 

  • Fogaca AC, Lorenzini DM, Kaku LM, Esteves E, Bulet P, Daffre S (2004) Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev Comp Immunol 28:191–200. doi:10.1016/j.dci.2003.08.001

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Lherer RI (1994) Defensins. Curr Opin Immunol 6:584–589. doi:10.1016/0952-7915(94) 90145-7

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643. doi:10.1146/annurev.ento.42.1.611

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415. doi:10.1016/0167-5699(92) 90092-L

    Article  PubMed  CAS  Google Scholar 

  • Hynes WL, Ceraul SM, Todd SM, Seguin KC, Sonenshine DE (2005) A defensin-like gene expressed in the black-legged tick, Ixodes scapularis. Med Vet Entomol 19:339–344. doi:10.1111/j.1365-2915.2005.00579.x

    Article  PubMed  CAS  Google Scholar 

  • Hynes WL, Stokes MM, Hensley SM, Todd SM, Sonenshine DE (2008) Using RNA interference to determine the role of varisin in the innate immune system of the hard tick Dermacentor variabilis (Acari: Ixodidae). Exp Appl Acarol 45. doi:10.1007/s10493-008-9158-6

  • Johns R, Sonenshine DE, Hynes WL (2000) Tick immunity to microbial infections: anti-bacterial peptides or proteins in the hemolymph of the hard tick Dermacentor variabilis (Acari: Ixodidae). Acarology Proc 10th Internatl Congr, Canberra, Australia, pp 638–644

    Google Scholar 

  • Johns R, Sonenshine DE, Hynes WL (2001a) Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis. Insect Biochem Mol Biol 31:857–865. doi:10.1016/S0965-1748(01)00031-5

    Article  PubMed  CAS  Google Scholar 

  • Johns R, Ohnishi J, Broadwater A, Sonenshine DE, deSilva A, Hynes WL (2001b) Contrasts in tick immune responses to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis (L.) versus immunocompetence in Dermacentor variabilis. J Med Entomol 38:99–107

    Article  PubMed  CAS  Google Scholar 

  • Kocan KM (1986) Development of Anaplasma marginale in ixodid ticks: coordinated development of a rickettsial organism and its tick host. In: Sauer J, Hair JA (eds) Morphology, physiology and behavioral ecology of ticks. Ellis Horwood Ltd, Chichester, pp 472–505

    Google Scholar 

  • Kocan KM, Hair JA, Ewing SA (1980) Ultrastructure of Anaplasma marginale Theiler in Dermacentor andersoni Stiles and Dermacentor variabilis (Say). Am J Vet Res 41:1966–1976

    PubMed  CAS  Google Scholar 

  • Kocan KM, Goff WL, Stiller D, Claypool PL, Edwards W, Ewing SA et al (1992a) Persistence of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in male Dermacentor andersoni (Acari: Ixodidae) transferred successively from infected to susceptible cattle. J Med Ent 29:657–668

    CAS  Google Scholar 

  • Kocan KM, Stiller D, Goff WL, Claypool PL, Edwards W, Ewing SA et al (1992b) Development of Anaplasma marginale in male Dermacentor andersoni transferred from infected to susceptible cattle. Am J Vet Res 53:499–507

    PubMed  CAS  Google Scholar 

  • Kocan KM, de la Fuente J, Blouin EF, Garcia-Garcia JC (2004) Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology 129:S285–S300. doi:10.1017/S0031182003004700

    Article  PubMed  Google Scholar 

  • Kocan KM, Yoshioka J, Sonenshine DE, de la Fuente J, Ceraul SM, Blouin EF et al (2005) Capillary tube feeding system for studying tick/pathogen interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettisales: Anaplasmataceae). J Med Entomol 42:864–874. doi:10.1603/0022-2585(2005) 042[0864:CTFSFS]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Lai R, Lomas LO, Jonczy J, Turner PC, Rees HH (2004) Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J 379:681–685. doi:10.1042/BJ20031429

    Article  PubMed  CAS  Google Scholar 

  • Lehane MJ, Wu D, Lehane SM (1997) Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A 94:11502–11507. doi:10.1073/pnas.94.21.11502

    Article  CAS  Google Scholar 

  • Ma Y, Creanga A, Lum L, Beachy PA (2006) Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443:359–363. doi:10.1038/nature05179

    Article  PubMed  CAS  Google Scholar 

  • Manzano-Roman R, Almazán C, Naranjo V, Blouin EF, Kocan KM, de la Fuente J (2007) Expression of perilipin in human promyelocytic cells in response to Anaplasma phagocytophilum infection results in modified lipid metabolism. J Med Microbiol (in press)

    Google Scholar 

  • Nakajima Y, van Naters-Yasui AV, Taylor D, Yamakawa M (2001) Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem Mol Biol 31:747–751. doi:10.1016/S0965-1748(01) 00066-2

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, van Naters-Yasui A, Taylor D, Yamakawa M (2002) Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol Biol 11:611–618. doi:10.1046/j.1365-2583.2002.00372.x

    Article  PubMed  CAS  Google Scholar 

  • Richardson KC, Jarret L, Finke FH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    PubMed  CAS  Google Scholar 

  • Rudenko N, Golovchenko M, Edwards MJ, Grubhoffer L (2005) Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J Med Entomol 42:36–41. doi:10.1603/0022-2585(2005) 042[0036:DEOIRT]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC et al (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 101:1892–1897. doi:10.1073/pnas.0308698100

    Article  PubMed  CAS  Google Scholar 

  • Siedz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839. doi:10.1038/ncb1038

    Article  CAS  Google Scholar 

  • Simser JA, Macaluso KR, Mulenga A, Azad AF (2004) Immune-responsive lysozymes from hemocytes of the American dog tick, Dermacentor variabilis, and an embryonic cell line of the Rocky Mountain wood tick, D andersoni. Insect Biochem Mol Biol 34:1253–1246. doi:10.1016/j.ibmb.2004.07.003

    Article  CAS  Google Scholar 

  • Sonenshine DE (1993) Biology of ticks, vol 2. Oxford University Press, New York

    Google Scholar 

  • Sonenshine DE, Hynes WL, Ceraul SM, Mitchell RD, Benzine T (2005) Host blood proteins and peptides in the midgut of the tick Dermacentor variabilis contribute to bacterial control. Exp Appl Acarol 36:207–223. doi:10.1007/s10493-005-2564-0

    Article  PubMed  CAS  Google Scholar 

  • Sukumaran B, Narasimhan S, Anderson JF, DePonte K, Marcantonio N et al (2006) An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med 203:1507–1517. doi:10.1084/jem.20060208

    Article  PubMed  CAS  Google Scholar 

  • Todd SM, Sonenshine DE, Hynes WL (2007) Tissue and life-stage distribution of a defensin gene in the Lone Star Tick, Amblyomma americanum. Med Vet Entomol 21:141–147. doi:10.1111/j.1365-2915.2007.00682.x

    Article  PubMed  CAS  Google Scholar 

  • Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X, Oliver JH Jr et al (2007) A babesial vector tick defensin against Babesia parasites. Infect Immun 75:3633–3640. doi:10.1128/IAI.00256-07

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Ueda M, Umemiya R, Battsetseg B, Boldbaatar D, Xuan X et al (2006) A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem Mol Biol 36:527–535. doi:10.1016/j.ibmb.2006.03.003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Sonenshine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kocan, K.M., de la Fuente, J., Manzano-Roman, R., Naranjo, V., Hynes, W.L., Sonenshine, D.E. (2008). Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections. In: Bruin, J., van der Geest, L.P.S. (eds) Diseases of Mites and Ticks. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9695-2_4

Download citation

Publish with us

Policies and ethics