Overwintering and prevalence of Neozygites floridana (Zygomycetes: Neozygitaceae) in hibernating females of Tetranychus urticae (Acari: Tetranychidae) under cold climatic conditions in strawberries

Abstract

To evaluate overwintering strategies of the fungus Neozygites floridana, an important natural enemy of Tetranychus urticae, hibernating T. urticae females were investigated for the presence of fungal structures throughout one winter (October 12, 2006 to February 19, 2007) in field-grown strawberries in a cold climate in Norway (min. ambient temp −15.3°C). Neozygites floridana was present as hyphal bodies inside live, hibernating females in T. urticae populations throughout the sampling period. The lowest percentages of hibernating females with hyphal bodies were found at the two first dates of sampling at 5.5 and 0% on October 12 and 19, respectively. The prevalence then increased and peaked at 54.4% on January 14. Resting spores (immature) were also found in live hibernating females at some dates, but at lower prevalence than for hyphal bodies and predominantly only until November 8. Prevalence of resting spores in live hibernating females ranged from 2.5 to 13.8%. Total number of T. urticae was also recorded, and most mites of all four categories (nymphs, males, non-hibernating and hibernating females) were found at the first sampling date. At this date non-hibernating females were the most abundant. A sharp decrease in non-hibernating females, nymphs and males was, however, seen from mid-October to mid-November; also numbers of hibernating females decreased, but not as fast. The relative abundance of hibernating females compared to non-hibernating females increased from 32.2% at the first collection (October 12) to 97.7% at the last collection (February 2). This study confirms that N. floridana survives the winter as a semi-latent hyphal body infection, protected inside live hibernating females. It is therefore ready to develop and sporulate as soon as climatic conditions permit, resulting in early season infection of T. urticae.

Keywords

Diapause Hibernating females Hyphal bodies Neozygites floridana Overwintering Resting spores Tetranychus urticae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brahde R (1970) Solas stilling i Norge Universitetsforlaget, Oslo, Norway (In Norwegian)Google Scholar
  2. Brandenburg RL, Kennedy GG (1981) Overwintering of the pathogen Entomophthora floridana and its host, the twospotted spider mite. J Econ Entomol 74:428–431Google Scholar
  3. Boykin LS, Campbell WV, Beute MK (1984) Effect of pesticides on Neozygites floridana (Entomophthorales: Entomophthoraceae) and arthropod predators attacking the twospotted spider mite (Acari: Tetranychidae) in North Carolina peanut fields. J Econ Entomol 77:969–975Google Scholar
  4. Carner GR (1976) A description of the life cycle of Entomophthora sp. in the two-spotted spider mite. J Invertebr Pathol 28:245–254CrossRefGoogle Scholar
  5. Carner GR, Canerday TD (1970) Entomophthora sp. as a factor in the regulation of the two-spotted spider mite on cotton. Ecol Entomol 63:638–640Google Scholar
  6. Cranham JE, Helle W (1985) Pesticide resistance in tetranychidae. In: Helle W, Sabelis MW (eds) Spider mites their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam, pp 405–421Google Scholar
  7. Cross JV, Easterbrook MA, Crook AM, Crook D, Fitzgerald JD, Innocenzi PJ, Jay CN, Solomon MG (2001) Review: natural enemies and biocontrol of pests of strawberry in northern and central Europe. Biocontrol Sci Technol 11:165–216CrossRefGoogle Scholar
  8. Delalibera I Jr, De Moraes GJ, Lapointe ST, Da Silva CAD, Tamai MA (2000) Temporal variability and progression of Neozygites sp. (Zygomycetes: Entomophthorales) in populations of Mononychellus tanajoa (Bondar) (Acari: Tetranychidae). Ann Soc Entomol Brasil 29:523–535Google Scholar
  9. Delalibera I Jr, Demétrio CGB, Manly BFJ, Hajek AE (2006) Effect of relative humidity and of isolates of Neozygites tanajoae (Zygomycetes: Entomophthorales) on production of conidia from cassava green mite, Mononychellus tanajoae (Acari: Tetranychidae), cadavers. Biol Control 39:489–496CrossRefGoogle Scholar
  10. Devine GJ, Barber M, Denholm I (2001) Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manage Sci 57:443–448CrossRefGoogle Scholar
  11. Dick GL, Buschman LL (1995) Seasonal occurrence of a fungal pathogen, Neozygites adjarica (Entomophthorales: Neozygitaceae), infecting banks grass mites, Oligonychus pratensis and twospotted spider mites, Tetranychus urticae (Acari: Tetranychidae), in field corn. J Kans Entomol Soc 64:425–436Google Scholar
  12. Easterbrook MA, Fitzgerald JD, Solomon MG (2001) Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Exp Appl Acarol 25:25–36PubMedCrossRefGoogle Scholar
  13. Elliot SL (1998) Ecology and epizootiology of Neozygites floridana, a pathogen of the cassava green mite. Imperial College at Silwood Park, Berkshire, United Kingdom. (Ph.D. Thesis)Google Scholar
  14. Elliot SL, Mumford JD, de Moraes GJ (2002) The role of resting spores in the survival of the mite-pathogenic fungus Neozygites floridana from Mononychellus tanajoa during dry periods in Brazil. J Invertebr Pathol 81:148–157PubMedCrossRefGoogle Scholar
  15. Garcia-Mari F, Gonzalez-Zamora JE (1999) Biological control of Tetranychus urticae (Acari: Tetranychidae) with naturally occurring predators in strawberry plantings in Valencia, Spain. Exp Appl Acarol 23:487–495CrossRefGoogle Scholar
  16. Greco NM, Pereyra PC, Guillade A (2005) Host-plant acceptance and performance of Tetranychus urticae (Acari: Tetranychidae). J Appl Entomol 130:32–36CrossRefGoogle Scholar
  17. Hajek AE (1997) Ecology of terrestrial fungal entomopathogens. In: Jones JG (ed) Advances in microbial ecology. Plenum Press, New York, pp 193–247Google Scholar
  18. Hajek AE, Humber RA (1997) Formation and germination of Entomophaga maimaiga azygospores. Can J Bot 75:1739–1747CrossRefGoogle Scholar
  19. Helle W (1962) Genetics of resistance to organophosphorus compounds and its relation to diapause in Tetranychus urticae (Koch (Avari: Tetranychidae). T Pl Ziekten 68:155–195Google Scholar
  20. Humber RA (1997) Fungi: Identification. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, San Diego, pp 153–185CrossRefGoogle Scholar
  21. Hutchins SH (1994) Techniques for sampling arthropods in integrated pest management. In: Pedigo LP, Buntin GD (eds) Handbook of sampling methods for arthropods in agriculture. CRC Press, London, pp 74–96Google Scholar
  22. Keller S (1991) Arthropod-pathogenic entomophthorales of Switzerland. II. Erynia, Erynopsis, Neozygites, Zoophthora and Tarichum. Sydowia 43:39–122Google Scholar
  23. Klingen I, Westrum K (2007) The effect of pesticides used in strawberries on the phytophagous mite Tetranychus urticae (Acari: Tetranychidae) and its fungal natural enemy Neozygites floridana (Zygomycetes: Entomophthorales). Biol Control 43:222–230CrossRefGoogle Scholar
  24. Klubertanz TH, Pedigo LP, Carlson RE (1991) Impact of fungal epizootics on the biology and management of the two spotted spider mite (Acari: Tetranychidae) in soybean. Environ Entomol 20:731–735Google Scholar
  25. Mietkiewski R, Balazy S, van der Geest LPS (1993) Observations on a mycosis of spider mites (Acari: Teranychidae) caused by Neozygites floridana in Poland. J Invertebr Pathol 61:317–319CrossRefGoogle Scholar
  26. MINITAB (2006) Relase 14. State College, USAGoogle Scholar
  27. Nemoto H, Aoki J (1975) Entomophthora floridana (Entomophthorales: Entomophthoraceae) attacking the sugi spider mite, Oligonychus hondoensis (Acarina : Tetranychidae), in Japan. Appl Ent Zool 10:90–95Google Scholar
  28. Nilsen C, Steenberg T (2004) Entomophthoralean fungi infecting the bird cherry-oat aphid, Rhopalosiphum padi, feeding on its winter host bird cherry, Prunus padus. J Invertebr Pathol 87:70–73CrossRefGoogle Scholar
  29. Nordengen I, Klingen I (2006) Comparison of methods for estimating the prevalence of Neozygites floridana in Tetranychus urticae populations infesting strawberries. J Invertebr Pathol 92:1–6PubMedCrossRefGoogle Scholar
  30. Oduor GI, Yaninek JS, DeMoraes GJ, van der Geest LPS (1997) The effect of pathogen dosage on the pathogenicity of Neozygites floridana (Zygomycetes: Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). J Invertebr Pathol 70:127–130PubMedCrossRefGoogle Scholar
  31. Raworth DA (1986) An economic threshold function for the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on strawberries. Canadian Entomol 118:9–6CrossRefGoogle Scholar
  32. Sances FV, Wyman JA, Ting IP (1979) Physiological responses to spider mite infestation on strawberries. Environ Entomol 8:711–714Google Scholar
  33. Sances FV, Wyman JA, Ting IP, Vansteenwyk RA, Oatman ER (1981) Spider mite interactions with photosynthesis, transpiration and productivity of strawberry (Acari: Tetranychidae). Environ Entomol 10:442–448Google Scholar
  34. Sances FV, Toscano NC, Oatman ER, Lapre LF, Johnson MW, Voth V (1982) Reductions in plant processes by Tetranychus urticae (Acari: Tetranychidae) feeding on strawberry. Environ Entomol 11:733–737Google Scholar
  35. Smitley DR, Brooks WM, Kennedy GG (1986a) Environmental effects on production of primary and secondary conidia, infection, and pathogenesis of Neozygites floridana, a pathogen of the twospotted spider mite, Tetranychus urticae. J Invertebr Pathol 47:325–332CrossRefGoogle Scholar
  36. Smitley DR, Kennedy GG, Brooks WM (1986b) Role of the entomogenous fungus, Neozygites floridana, in population declines of the twospotted spider mite, Tetranychus urticae in field corn. Entomol Exp Appl 41:255–264CrossRefGoogle Scholar
  37. Steinkraus DC (2000) Documentation of naturally-occurring pathogens and their impact in agroecosystems. In: Lacey L, Kaya Field HK (eds) Manual of techniques in invertebrate pathology. Kluwer Academic Publishers, The Netherlands, pp 303–320Google Scholar
  38. Stenseth C (1965) Cold hardiness in the two-spotted spider mite (Tetranychus urticae Koch). Entomol Exp Appl 8:33–38CrossRefGoogle Scholar
  39. Stenseth C (1976) Overvintring av veksthusspinnmidd (Tetranychus urticae) i jordbærfelt. Gartneryrket 66:374–376 (In Norwegian)Google Scholar
  40. Thomsen L, Brescani J, Eilenberg J (2001) Formation and germination of resting spores from different strains from the Entomophthora muscae complex produced in Musca domestica. Can J Bot 79:1076–1082CrossRefGoogle Scholar
  41. van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24:497–560PubMedCrossRefGoogle Scholar
  42. Tillotson DK, Margolies DC (1990) Effect of cadaver age on production of infective stages of Entomophaga gryllii pathotype 2 in infected Melanoplus differentialis. J Invertebr Pathol 55:202–206CrossRefGoogle Scholar
  43. Veerman A (1977a) Aspects of the induction of diapause in a laboratory strain of the mite Tetranychus urticae. J Insect Physiol 23:703–711CrossRefGoogle Scholar
  44. Veerman A (1977b) Photoperiodic termination of diapause in spider mites. Nature 266:526–527PubMedCrossRefGoogle Scholar
  45. Veerman A (1985) Diapause. In: Helle W, Sabelis MW (eds) Spider mites their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 279–316Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ingeborg Klingen
    • 1
  • Gunnar Wærsted
    • 1
    • 2
  • Karin Westrum
    • 1
  1. 1.Plant Health and Plant Protection DivisionNorwegian Institute for Agricultural and Environmental Research (Bioforsk)AasNorway
  2. 2.Department of Plant and Environmental SciencesNorwegian University of Life SciencesAasNorway

Personalised recommendations