Advertisement

Characteristics of Permafrost Forests in Siberia and Potential Responses to Warming Climate

  • A. Osawa
  • Y. Matsuura
  • T. Kajimoto
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 209)

Abstract

The purpose of this chapter is to synthesize what have been reported in the preceding chapters, and to discuss (1) major characteristics in the structure, function, and development patterns of the larch forests that grow on permafrost, and (2) how their structure and function may change due to the warming climate.

Keywords

Fine Root Soil Respiration Warm Climate Fine Root Production Larch Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Nadja Tchebakova for calculating distribution of future biomes in Siberia with her model, and producing Fig. 24.4.

References

  1. Anderson PM, Lozhkin AV (2001) The stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations. Quaternary Science Reviews 20:93-125CrossRefGoogle Scholar
  2. Barbour MG, Burk JH, Pitts WD (1980) Terrestrial plant ecology. Benjamin/Cummings Publishing, Menlo ParkGoogle Scholar
  3. Barr AG, Griffis TJ, Black TA, Lee X, Staebler RM, Fuentes JD, Chen Z, Morgenstern K (2002) Comparing the carbon budgets of boreal and temperature deciduous forest stands. Can J For Res 32:813-822CrossRefGoogle Scholar
  4. Berg EE, Chapin FS III (1994) Needle loss as a mechanism of winter drought avoidance in boreal conifers. Can J For Res 24:1144-1148CrossRefGoogle Scholar
  5. Black RA, Bliss LC (1980) Reproductive ecology of Picea mariana (MILL.) BSP, at tree line near Inuvik, Northwest Territories, Canada. Ecol Monogr 50:331-354CrossRefGoogle Scholar
  6. Bonan GB, Shugart HH, Urban DL (1990) The sensitivity of some high-latitude boreal forests to climatic parameters. Clim Change 16:9-29CrossRefGoogle Scholar
  7. Bouma TJ, Bryla DR (2000) On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant Soil 227:215-221CrossRefGoogle Scholar
  8. Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can J For Res 23:1402-1407CrossRefGoogle Scholar
  9. Brown J, Ferrians OJ, Heginbottom JA, Melnikov ES (1997) Circum-arctic map of permafrost and ground-ice conditions. Circum-Pacific Map Series MAP CP-45, US Geological SurveyGoogle Scholar
  10. Burns RM, Honkala BH (eds) (1990) Silvics of North America. Agricultural Handbook 654. USDA, Forest Service, Washington, DCGoogle Scholar
  11. Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389-399CrossRefGoogle Scholar
  12. Chapin FS III, Fetcher N, Kielland K, Everett KR, Linkins AE (1988) Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69:693-702CrossRefGoogle Scholar
  13. Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041-1050CrossRefGoogle Scholar
  14. Chen H, Tian HQ (2005) Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? J Integr Plant Biol 47:1288-1302CrossRefGoogle Scholar
  15. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173CrossRefPubMedGoogle Scholar
  16. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185-190CrossRefPubMedGoogle Scholar
  17. Edwards ME, Brubaker LB, Lozhkin AV, Anderson PM (2005) Structurally novel biomes: a response to past warming in Beringia. Ecology 86:1696-1703CrossRefGoogle Scholar
  18. Fukuzaki K (2008) Aboveground net primary production and biomass of forest floor vegetation (mosses, lichens, shrubs) in natural larch forest on Siberian permafrost. Thesis. Department of Forest Science, Faculty of Agriculture, Kyoto University, 20pp (in Japanese)Google Scholar
  19. Gordon C, Cooper C, Senior C (2000) The simulation of SST, sea-ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147-168CrossRefGoogle Scholar
  20. Gower ST, Richards JH (1990) Larches: deciduous conifers in an evergreen world. Bioscience 40:818-826CrossRefGoogle Scholar
  21. Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395-1411CrossRefGoogle Scholar
  22. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lövenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789-792CrossRefPubMedGoogle Scholar
  23. Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change: the IPCC Scientific assessment. Cambridge University Press, Cambridge, MAGoogle Scholar
  24. Johnston WF (1990) Larix laricina (Du Roi) K. Koch, Tamarack. In: Burns RM, Honkala BH (eds) Silvics of North America, Agricultural Handbook 654. USDA, Forest Service, Washington, DCGoogle Scholar
  25. Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999) Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815-822PubMedGoogle Scholar
  26. Kajimoto T, Matsuura Y, Osawa A, Abaimov AP, Zyryanova OA, Isaev AP, Yefremov DP, Mori S, Koike T (2006) Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia. For Ecol Manage 222:314-325CrossRefGoogle Scholar
  27. Kharuk VI, Ranson KJ, Dvinskaya M (2007) Evidence of evergreen conifer invasion into larch dominated forests during recent decades in Central Siberia. Eurasian J For Res 10:163-171Google Scholar
  28. Kirdyanov AV, Hughes MK, Vaganov EA, Schweingruber FH, Silkin P (2003) The importance of early summer temperature and date of snowmelt for tree growth in the Siberian subarctic. Trees 17:61-69CrossRefGoogle Scholar
  29. Kloeppel BD, Gower ST, Treichel IW, Kharuk S (1998) Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison. Oecologia 114:153-159CrossRefGoogle Scholar
  30. Koike T, Mori S, Matsuura Y, Prokushkin SG, Zyranova OA, Kajimoto T, Abaimov AP (1998) Photosynthesis and foliar nutrient dynamics in larch and spruce grown on contrasting north- and south-facing slopes in the Tura Experiment Forest in central Siberia. In: Mori S, Kanazawa Y, Matsuura Y, Inoue G (eds) Proceedings of the sixth symposium on the Joint Siberian Permafrost studies between Japan and Russia in 1997. Tsukuba, pp 3-10Google Scholar
  31. Koike T, Mori S, Matsuura Y, Prokushkin SG, Zyryanova OA, Kajimoto T, Sasa K, Abaimov AP (1999) Shoot growth and photosynthetic characteristics in larch and spruce affected by temperature of the contrasting north and south facing slopes in eastern Siberia. In: Shibuya M, Takahashi K, Inoue G (eds) Proceedings of the seventh symposium on the Joint Siberia Permafrost studies between Japan and Russia in 1998, Tsukuba, pp 3-12Google Scholar
  32. Kojima S (1994) Boreal ecosystems and global climate warming. Jpn J Ecol 44:105-113Google Scholar
  33. Kujansuu J, Yasue K, Koike T, Abaimov AP, Kajimoto T, Takeda T, Tokumoto M, Matsuura Y (2007a) Responses of ring widths and maximum densities of Larix gmelinii to climate on contrasting north- and south-facing slopes in central Siberia. Ecol Res 22:582-592CrossRefGoogle Scholar
  34. Kujansuu J, Yasue K, Koike T, Abaimov AP, Kajimoto T, Takeda T, Tokumoto M, Matsuura Y (2007b) Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia. J Wood Sci 53:87-93CrossRefGoogle Scholar
  35. Lacourse T, Gajewski K (2000) Late quaternary vegetation history of Sulphur Lake, southwest Yukon Territory, Canada. Arctic 53:27-35Google Scholar
  36. Légère A, Payette S (1981) Ecology of a black spruce (Picea mariana) clonal population in the hemiarctic zone, northern Quebec: population dynamics and spatial development. Arct Alp Res 13:261-276CrossRefGoogle Scholar
  37. Matsuura Y, Kajimoto T, Osawa A, Abaimov AP, Zyryanova OA (2004) Coarse woody debris estimation in a Larix gmelinii stand in Tura, central Siberia. In: Proceedings of the seventh international conference on global change connection to the arctic (GCCA7). International Arctic Research Center, University of Alaska Fairbanks, pp 199-202Google Scholar
  38. Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131-139CrossRefGoogle Scholar
  39. Nakai Y, Matsuura Y, Kajimoto T, Abaimov AP, Yamamoto S, Zyryanova OA (2008) Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost of Central Siberia during a growing season. Theor Appl Climatol 93:133-147CrossRefGoogle Scholar
  40. O’Connell KEB, Gower ST, Morman JM (2003) Comparison of net primary production and light-use dynamics of two boreal black spruce forest communities. Ecosystems 6:236-247CrossRefGoogle Scholar
  41. Osawa A (1995) Inverse relationship of crown fractal dimension to self-thinning exponent of tree populations: a hypothesis. Can J For Res 25:1608-1617CrossRefGoogle Scholar
  42. Osawa A, Allen RB (1993) Allometric theory explains self-thinning relationships of mountain beech and red pine. Ecology 74:1020-1032CrossRefGoogle Scholar
  43. Payette S, Gagnon R (1979) Tree-line dynamics in Ungava peninsula, northern Quebec. Holarct Ecol 2:239-248Google Scholar
  44. Penalba MC, Payette S (1997) Late-Holocene expansion of eastern larch (Larix laricina [Du Roi] K. Koch) in northwestern Quebec. Quatern Res 48:114-121CrossRefGoogle Scholar
  45. Prokushkin AS, Kajimoto T, Prokushkin SG, McDowell WN, Abaimov AP, Matsuura Y (2005) Climatic factors influencing fluxes of dissolved organic carbon from the forest floor in a continuous-permafrost Siberian watershed. Can J For Res 35:2129-2139CrossRefGoogle Scholar
  46. Ritchie JC (1977) The modern and late Quaternary vegetation of the Campbell-dolomite uplands, near Inuvik, N.W.T. Canada. Ecol Monogr 47:401-423CrossRefGoogle Scholar
  47. Ritchie JC (1982) The modern and late-quaternary vegetation of the Doll area, north Yukon, Canada. New Phytol 90:563-603CrossRefGoogle Scholar
  48. Ritchie JC (1984) Past and present vegetation of the far northwest of Canada. University of Toronto Press, TorontoGoogle Scholar
  49. Ritchie JC (1985) Late-Quaternary climatic and vegetational change in the lower MacKenzie basin, northwest Canada. Ecology 66:612-621CrossRefGoogle Scholar
  50. Rudolph TD, Laidly PR (1990) Pinus banksiana Lamb. Jack Pine. In: Burns RM, Honkala BH (eds) Silvics of North America, Agriculture Handbook 654. USDA Forest Service, Washington, DCGoogle Scholar
  51. Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agr Forest Meteorol 148:700-713Google Scholar
  52. Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeoscience 3:147-166CrossRefGoogle Scholar
  53. Schulze E-D, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Kusnetsova WA, Sogatchev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can J For Res 25:943-960CrossRefGoogle Scholar
  54. Subke J-A, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. Global Change Biol 12:9321-9943Google Scholar
  55. Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231-256CrossRefGoogle Scholar
  56. Tyrrell LE, Boerner RE (1987) Larix laricina and Picea mariana: relationships among leaf life-span, foliar nutrient patterns, nutrient conservation, and growth efficiency. Can J Bot 65:1570-1577CrossRefGoogle Scholar
  57. Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149-151CrossRefGoogle Scholar
  58. Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861-865CrossRefPubMedGoogle Scholar
  59. Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (eds) (1986) Forest ecosystems in the Alaskan taiga. Ecological Studies, vol 57. Springer, BerlinGoogle Scholar
  60. Wein RW, MacLean D (1983) The role of fire in northern circumpolar ecosystems. Scope 18, Wiley, TorontoGoogle Scholar
  61. Yuste JC, Janssens IA, Carrara A, Meiresonne L, Caulemans R (2003) Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol 23:1263-1270Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Osawa
    • 1
  • Y. Matsuura
    • 2
  • T. Kajimoto
    • 3
  1. 1.Division of Forest and Biomaterials SciencesGraduate School of Agriculture, Kyoto UniversityKyotoJapan
  2. 2.Department of Forest Site EnvironmentForestry and Forest Products Research InstituteTsukubaJapan
  3. 3.Department of Plant EcologyForestry and Forest Products Research InstituteTsukubaJapan

Personalised recommendations