Skip to main content

The Role of Ectomycorrhiza in Boreal Forest Ecosystem

  • Chapter
  • First Online:
Permafrost Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 209))

Abstract

The ectomycorrhizal fungi (ECM fungi) are both abundant and widespread in boreal forests. Host plant provides the assimilated carbon to the infecting ECM fungi. Many studies indicate that at most 10-30% of the assimilated carbon by the host plant photosynthesis may be used by the fungal partner for the production and sustenance of its external biomass (Smith and Read 1997). On the other hand, ECM fungi exude extracellular enzymes that are able to break down complex organic substances and consequently transmit the inorganic nutrients to their hosts. Such ECM activity results in greater plant growth under severe environmental conditions of the boreal forests (Read 1991; Chalot and Brun 1998). Tree seedlings infected with ECM can significantly improve their growth when compared with nonmycorrhizal seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula Roth.) infected with different mycorrhizal fungi. New Phytol 112:55-60

    Article  CAS  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhiza. Cambridge University Press, Cambridge

    Google Scholar 

  • Barr J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules following a stand-replacing wildfire. New Phytol 143:409-418

    Article  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Ann Rev Ecol Syst 21:167-196

    Article  Google Scholar 

  • Cairney JWG, Bastias BA (2007) Influences of fire on forest soil fungal communities. Can J For Res 37:207-215

    Article  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbial Rev 22:21-44

    Article  CAS  Google Scholar 

  • Choi DS, Kayama M, Chung DJ, Jin HO, Quoreshi AM, Maruyama Y, Koike T (2005) Mycorrhizal activities in Pinus densiflora, P. koraiensis and Larix kaemferi native to Korea raised under high CO2 concentrations and water use efficiency. Phyton 45:139-144

    CAS  Google Scholar 

  • Colpaert JV, Van Laere A, Van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787-793

    CAS  PubMed  Google Scholar 

  • Coutts MP, Nicoll BC (1990) Growth and survival of shoots, roots and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after planting. Can J For Res 20:861-868

    Article  Google Scholar 

  • Czimczik CI, Schmidt MWI, Schulze ED (2005) Effects of increasing fire frequency on black carbon and organic matter in podzols of Siberian Scots pine forests. Eur J Soi Sci 56:417-428

    Article  Google Scholar 

  • Diaz S (1996) Effects of elevated [CO2] at the community-level mediated by root symbionts. Plant Soil 187:309-320

    Article  CAS  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomophs with special reference to their role in water transport. Nature 287:834-836

    Article  Google Scholar 

  • Durall DM, Jones MD, Tinker PB (1994) Allocation of C-14 carbon in ectomycorrhizal willow. New Phytol 128:109-114

    Article  CAS  Google Scholar 

  • Dyson F (1992) From Eros to Gaia. Pantheon Books, New York

    Google Scholar 

  • Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytol 135:133-142

    Article  CAS  Google Scholar 

  • Finlay RD (1993) Uptake and mycelial translocation of nutrients by ectomycorrhizal fungi. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhiza in Ecosystems. Proceedings of the Third Eur Symp mycorrhizas. CAB International, Wallingford, pp 91-97

    Google Scholar 

  • Finlay RD, Söderström B (1989) Mycorrhizal mycelia and their role in soil and plant communities. In: Clarholm M, Bergstrom L (eds) Ecology of arable land, perspectives and challenges, Development in plant and soil science, vol 39. Kluwer Academic Publishers, Dordrecht, pp 139-148

    Google Scholar 

  • Fogel R, Hunt G (1983) Contribution of mycorrhiza and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can J For Res 13:219-232

    Article  CAS  Google Scholar 

  • Frank AB (1894) Die Bedeutung der Mycorrhizapilze für die gemeine Kiefer. Forstwissen Centralbl 16:1852-1890

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22-36

    Article  CAS  PubMed  Google Scholar 

  • Gorissen A (1996) Elevated CO2 evokes quantitative and qualitative changes in carbon dynamics in a plant/soil system: mechanisms and implications. Plant Soil 187:289-298

    Article  CAS  Google Scholar 

  • Halldorsson G, Sverrisson H, Eyjolfsdottir GG, Oddsdottir ES (2000) Ectomycorrhizae reduce damage to Russian larch by Otiorhyncus larvae. Scand J For Res 15:354-358

    Article  Google Scholar 

  • Harley JL (1971) Fungi in ecosystems. J Appl Ecol 59:653-668

    Google Scholar 

  • Hodge A (1996) Impacts of elevated CO2 on mycorrhizal associations and implications for plant-growth. Biol Fertil Soils 23:388-398

    Article  CAS  Google Scholar 

  • Horikoshi T (1986) Mushroom in the burn out sites [YAKEATOKINOKO]. Hakkokogaku Kaishi 64: 225 (in Japanease)

    Google Scholar 

  • Iwahana G, Machimura T, Kobayashi Y, Fedorov AN, Konstantinov PY, Fukuda M (2005) Influence of clear-cutting on thermal and hydrological regime in the active layer near Yakutsk, Eastern Siberia. J Geography Res 110:1-10

    Google Scholar 

  • Izzo A, Canright M, Bruns TD (2006) The effects of heat treatments on ectomycorrrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol Res 110:196-202

    Article  PubMed  Google Scholar 

  • Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999) Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815-822

    PubMed  Google Scholar 

  • Kasai K, Usami T, Lee J, Ishikawa S-H, Oikawa T (2000) Responses of ectomycorrhizal colonization and morphotype assemblage of Quercus myrsinaefolia seedlings to elevated air temperature and elevated atmospheric CO2. Microbes Environ 15:197-207

    Article  Google Scholar 

  • Kasischke ES, Stocks BJ (eds) (2000) Fire, climate change, and carbon cycling in the boreal forest. Ecological Studies, vol 138. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Khasa PD, Sigler L, Chakravarty P, Dancik BP, Erickson L, Mc Curdy D (2001) Effects of fertilization on growth and ectomycorrhizal development of container-grown and bare-root nursery conifer seedlings. New For 22:179-197

    Google Scholar 

  • Laiho O, Mikola P (1964) Studies on the effect of some eradicants on mycorrhizal development in forest nurseries. Acta For Fenn 77:1-34

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortin JA (1992) Hydraulic conductance and soil water potential at the soil root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231-244

    PubMed  Google Scholar 

  • Lapeyrie F, Picatto C, Gerard J, Dexheimer J (1990) Tem study of intercellular and extracellular calcium-oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with eucalyptus seedlings. Symbiosis 9:163-166

    Google Scholar 

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow DJ, Söderström B (eds) The Mycota IV. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281-250

    Google Scholar 

  • Lewis JD, Thomas RB, Strain BR (1994) Effects of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Plant Soil 165:81-88

    Article  CAS  Google Scholar 

  • Lewis JD, Lucash M, Olszyk DM, Tingey DT (2004) Relationships between needle nitrogen concentration and photosynthetic responses of Dohglas-fir seedings to elevateal CO2 and temperature. New Phytol 162:355-364

    Google Scholar 

  • Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35-40

    Article  CAS  Google Scholar 

  • Lindahl BD, Finlay RD, Cairney JWG (2005) Enzymatic activities of mycelia in mycorrhizal fungal communities. In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem. Marcel dekker, New York, pp 331-348

    Google Scholar 

  • Makoto K, Nemilostiv YP, Zyryanova OA, Kajimoto T, Matsuura Y, Yoshida T, Satoh F, Sasa K, Koike T (2007) Regeneration after forest fires in mixed conifer broad-leaved forests of the Amur region of Far Eastern Russia: the relationship between species specific traits against fire and recent fire regimes. Eurasian J For Res 10:51-58

    Google Scholar 

  • Makoto K, Kim YS, Tamai Y, Koike T (in press) Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant and Soil DOI:10.1007/s11104-009-0040-z

    Google Scholar 

  • Martin-Pinto P, Vaquerizo W, Penalver F, Olaizola J, Oria-de-Rueda JA (2006) Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For Ecol Manage 225:296-305

    Article  Google Scholar 

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with fungal symbiont Pisolithus tinctorius. For Sci 21:245-254

    Article  Google Scholar 

  • Murata Y (1991) In vitro mycorrhizal synthesis on Japanese larch (Larix leptolep sis Gordon) seedlings and their growth. Bull Hokkaido Forest Res Inst 29:1-13

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914-916

    Article  Google Scholar 

  • Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microb Ecol 27:195-205

    Article  CAS  Google Scholar 

  • Palfner G, Casanova-Kathy MA, Read DJ (2005) The ectomycorrhizal community in a forest chronosequences of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Northern England. Mycorrhiza 15:571-579

    Article  PubMed  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501-511

    Article  Google Scholar 

  • Qu LY, Shinano T, Quoreshi AM, Tamai Y, Osaki M, Koike T (2004) Allocation of 14C-carbon in two species of larch seedlings infected with ectomycorrhizal fungi. Tree Physiol 24:1369-1376

    CAS  PubMed  Google Scholar 

  • Read DJ (1983) The biology of mycorrhiza in the Ericales. Can J Bot 61:985-1004

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376-391

    Article  Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres P, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 105-117

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance ? New Phytol 157:475-492

    Article  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243-1263

    Article  CAS  Google Scholar 

  • Rennenberg H (1999) The significance of ectomycorrhizal fungi for sulfur nutriation of trees. Plant Soil 215:115-122

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41-53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Treseder KK, Allen MF (2002) Global change and mycorrhizal fungi. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 135-160

    Google Scholar 

  • Rygiewicz PT, Andersen CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58-60

    Article  Google Scholar 

  • Sanders IR, Steritwolf-Engel R, Van der Heijden MGA, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117:496-503

    Article  Google Scholar 

  • Schulze E-D, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Kusnetsova WA, Sogatchev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can J For Res 25:943-960

    Article  Google Scholar 

  • Shi F, Qu L, Wang W, Matsuura Y, Koike T, Sasa K (2002) Aboveground biomass and productivity of Larix gmelinii forests in northeast China. Eurasian J For Res 5:23-32

    Google Scholar 

  • Shvidenko A, Nilsson S (1996) Expanding Forests but Declining Mature Coniferous Forests in Russia. IIASA Workingpaper WP 96-059

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Staddon PL, Heinemever A, Fitter AH (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil 244:256-261

    Article  Google Scholar 

  • Tamm TO (1991) Nitrogen in terrestrial systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thormann MN (2006) The role of fungi in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological Studies, vol. 188, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tibbet M, Sanders FE, Cainey JWG (1998) The effect of temperature and inorganic phosphorous supply on growth and acid phosphate production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102:129-135

    Article  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG (2002) Low-temperature-induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basdiomycetes (Hebeloma spp.). Mycorrhiza 12:249-255

    Article  CAS  PubMed  Google Scholar 

  • Tinker PB, Durall DM, Jones MD (1994) Carbon use efficiency in mycorrhizas: theory and sample calculations. New Phytol 128:115-122

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189-200

    Article  Google Scholar 

  • Tuininga AR, Dighton J (2004) Changes in ectomycorrhizal communities and nutrient availability following prescribed burns in two upland pine-oak forests in the New Jersey pine barrens. Can J For Res 34:1735-1765

    Article  Google Scholar 

  • Turnbull MH, Schmidt S, Erskine PD, Richards S, Stewart GB (1996) Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiol 16:941-948

    PubMed  Google Scholar 

  • Van der Heijden MGA, Sanders IR (eds) (2002) Mycorrhizal Ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhiza role in net production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63:370-380

    Article  Google Scholar 

  • Wardle DA, Zackrisson O, Nilson MC (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115:419-426

    Article  Google Scholar 

  • Watteau F, Berthelin J (1994) Microbial dissolution of iron and aluminum from soil minerals efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur J Soi Biol 30:1-9

    CAS  Google Scholar 

  • Wielgolaski FE (2005) History and environment of the Nordic mountain birch. In: Wielgolaski FE (ed) Plant ecology, herbivory, and human impact in Nordic mountain birch forests. Ecological Studies, vol 180. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zyryanova OA, Bugaenko TN, Buganenk NN, Koike T, Takenaka A (2001) Plant association diversity regeneration as related cryogenic microrelief and forest fires. In: Fukuda M, Kobayashi Y (eds) Proceedings of the Ninth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 2000. Hokkaido University, Sapporo, pp 18-23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Qu, L., Makoto, K., Choi, D.S., Quoreshi, A.M., Koike, T. (2010). The Role of Ectomycorrhiza in Boreal Forest Ecosystem. In: Osawa, A., Zyryanova, O., Matsuura, Y., Kajimoto, T., Wein, R. (eds) Permafrost Ecosystems. Ecological Studies, vol 209. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9693-8_21

Download citation

Publish with us

Policies and ethics