Skip to main content

Root System Development of Larch Trees Growing on Siberian Permafrost

  • Chapter
  • First Online:
Permafrost Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 209))

Abstract

Below-ground processes have been highlighted in the studies of carbon flux, nutrient cycling, and biodiversity in many terrestrial ecosystems under changing climates (e.g., Chapin and Ruess 2001; Schulze 2006). So far, as tree roots are concerned, much attention has recently been paid to the study of fine roots rather than coarse roots (Brunner and Godbold 2007), since fine roots are more important biologically, such as in resource uptake and mycorrhizal association (Vogt et al. 1996; Read and Perez-Moreno 2003). This trend is aided by improvements in observation techniques and/or devices (i.e., minirhizotron, digital image analyzer) that enable us to monitor fine root dynamics (e.g., Vogt and Persson 1991; Hendrick and Pregitzer 1996; Majdi 1996; Vogt et al. 1998; Johnson et al. 2001). In contrast, individual-based root observation (i.e., root system excavation), which requires laborious and time consuming work, seems outdated today, although many classical studies indicated advantages of this approach. For example, measurement of coarse root mass is essential in the estimation of stand-level below-ground biomass and production (e.g., Karizumi 1974; Santantonio et al. 1977; Deans 1981). Also, quantitative description of the spatial patterns of root systems (e.g., rooting map) tell us characteristics of species-specific strategies under local or microscale soil conditions in natural habitats (e.g., McMinn 1963; Eis 1974; Fayle 1975a, b; Karizumi 1979; Coutts 1983; Reynolds 1983; Kuiper and Coutts 1992; Drexhage and Gruber 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaimov AP, Sofronov MA (1996) The main trends of post-fire succession in near-tundra forests of central Siberia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of boreal Eurasia. Kluwer Academic Publishers, Dordrecht, pp 372-386

    Google Scholar 

  • Bondarev A (1997) Age distribution patterns in open boreal Dahurican larch forests of Central Siberia. For Ecol Manage 93:205-214

    Article  Google Scholar 

  • Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a creosotebush (Larrea Tridentata) population. Ecology 75:1693-1702

    Article  Google Scholar 

  • Brunner I, Godbold DL (2007) Tree roots in a changing world. J Forest Res 12:78-82

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583-595

    Article  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545-570

    Article  Google Scholar 

  • Casper BB, Schenk J, Jackson RB (2003) Defining a plant’s belowground zone of influence. Ecology 84:2313-2321

    Article  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1-10

    Article  PubMed  Google Scholar 

  • Chapin FS III, Ruess RW (2001) The roots of the matter. Nature 411:749-752

    Article  CAS  PubMed  Google Scholar 

  • Cooper WS (1911) Reproduction by layering among conifers. Bot Gaz 52:369-379

    Article  Google Scholar 

  • Coutts MP (1983) Development of the structural root system of Sitka spruce. Forestry 56:1-16

    Article  Google Scholar 

  • Deans JD (1981) Dynamics of coarse root production in a young plantation of Picea sitchensis. Forestry 54:139-155

    Article  Google Scholar 

  • Drexhage M, Gruber F (1998) Architecture of the skeletal root system of 40-year-old Picea abies on strongly acidified soils in the Harz Mountains (Germany). Can J For Res 28:13-22

    Article  Google Scholar 

  • Drexhage M, Huber F, Colin F (1999) Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil 217:101-110

    Article  Google Scholar 

  • Dyrness CT, Viereck LA, Van Cleve K (1986) Fire in taiga communities of Interior Alaska. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga. Ecological studies, vol 57. Springer, Berlin, pp 74-86

    Google Scholar 

  • Eis S (1974) Root system morphology western hemlock, western red cedar, and Douglas-fir. Can J For Res 4:28-38

    Article  Google Scholar 

  • Fayle DCF (1975a) Extension and longitudinal growth during the development of red pine root systems. Can J For Res 5:109-121

    Article  Google Scholar 

  • Fayle DCF (1975b) Distribution of radial growth during the development of red pine root systems. Can J For Res 5:608-625

    Article  Google Scholar 

  • Gorbachev VN, Popova EP (1996) Fires and soil formation. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of boreal Eurasia. Kluwer Academic Publishers, Dordrecht, pp 331-336

    Google Scholar 

  • Grogan P, Bruns TD, Chapin FS III (2000) Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537-544

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1996) Application of minirhizotrons to understand root function in forests and other natural ecosystems. Plant Soil 185:293-304

    Article  CAS  Google Scholar 

  • Hinderson R, Ford ED, Renshaw E, Deans JD (1983) Morphology of the structural root system Sitka spruce 1. Analysis and quantitative description. Forestry 56:121-135

    Article  Google Scholar 

  • Islam MA, Macdonald SE (2004) Ecophysiological adaptation of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees 18:35-42

    Google Scholar 

  • Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263-289

    Article  PubMed  Google Scholar 

  • Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999) Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815-822

    PubMed  Google Scholar 

  • Kajimoto T, Matsuura Y, Osawa A, Prokushkin AS, Sofronov MA, Abaimov AP (2003) Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia. Plant Soil 255:281-292

    Article  CAS  Google Scholar 

  • Kajimoto T, Matsuura Y, Osawa A, Abaimov AP, Zyryanova OA, Isaev AP, Yefremov DP, Mori S, Koike T (2006) Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia. For Ecol Manage 222:314-325

    Article  Google Scholar 

  • Kajimoto T, Osawa A, Matsuura Y, Abaimov AP, Zyryanova OA, Kondo K, Tokuchi N, Hirobe M (2007) Individual-based measurement and analysis of root system development: case studies for Larix gmelinii trees growing on the permafrost region in Siberia. J Forest Res 12:103-112

    Article  Google Scholar 

  • Karizumi N (1974) The mechanism and function of tree root in the process of forest production. 1. Method of investigation and estimation of the root biomass. Bull Gov For Exp Sta 259:1-99

    Google Scholar 

  • Karizumi N (1979) Illustrations of tree roots. Seibundo Shinkosha, Tokyo, pp 554-557 (in Japanese)

    Google Scholar 

  • Kharuk VI, Dvinskaya ML, Ranson KJ (2005) The spatiotemporal pattern of firesin northern Taiga larch forests of Central Siberia. Russian J Ecol 36:302-311

    Article  Google Scholar 

  • Krause C, Eckstein D (1993) Dendrochronology of roots. Dendrochronologia 11:9-23

    Google Scholar 

  • Kuiper LC, Coutts MP (1992) Spatial disposition and extension of the structural root system of Douglas-fir. For Ecol Manage 47:111-125

    Article  Google Scholar 

  • Landhäusser SM, Wein RW (1993) Postfire vegetation recovery and tree establishment at the arctic treeline: climate-change-vegetation-response hypotheses. J Ecol 81:665-672

    Article  Google Scholar 

  • Lieffers VJ, Rothwell RL (1987) Rooting of peatland black spruce and tamarack in relation to depth of water table. Can J Bot 65:817-821

    Article  Google Scholar 

  • Mackay JR (1995) Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, N.W.T., Canada. Arct Alp Res 27:323-336

    Article  Google Scholar 

  • Majdi H (1996) Root sampling methods - applications and limitations of minirhizotron technique. Plant Soil 185:255-258

    Article  CAS  Google Scholar 

  • McMinn RG (1963) Characteristics of Douglas-fir root systems. Can J Bot 41:105-122

    Article  Google Scholar 

  • Mund M, Kummetz E, Hein M, Bauer GA, Schulze E-D (2002) Growth and carbon stocks of a spruce forest chronosequence in central Europe. For Ecol Manage 171:275-296

    Article  Google Scholar 

  • Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga. Ecological studies, vol 57. Springer, Berlin, pp 121-137

    Google Scholar 

  • Osawa A, Abaimov AP, Matsuura Y, Kajimoto T, Zyryanova OA (2003) Anomalous patterns of stand development in larch forests of Siberia. Tohoku Geophys J (Sci Rep Tohoku Univ Ser 5) 36:471-474

    Google Scholar 

  • Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands - review. For Eco Manage 175:253-273

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytol 157:475-492

    Article  Google Scholar 

  • Reynolds ERC (1983) The development of root systems analyzed by growth rings. Plant Soil 71:167-170

    Article  Google Scholar 

  • Richardson A (2000) Coarse root elongation rate estimates for interior Douglas-fir. Tree Physiol 20:825-829

    PubMed  Google Scholar 

  • Rouse WR (1976) Microclimatic changes accompanying burning in subarctic lichen woodland. Arct Alp Res 4:357-376

    Article  Google Scholar 

  • Santantonio D, Hermann RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17:1-31

    CAS  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:752-739

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480-494

    Article  Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants territorial? Adv Ecol Res 28:145-180

    Article  CAS  Google Scholar 

  • Schmid I, Kazda M (2005) Clustered root distribution in mature stands of Fagus sylvatica and Picea abies. Oecologia 144:25-31

    Article  Google Scholar 

  • Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3:147-166

    Article  CAS  Google Scholar 

  • Schulze E-D, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Kusnetsova WA, Sogatchev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can J For Res 25:943-960

    Article  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447-455

    Article  Google Scholar 

  • Smithwick EAH, Turner MG, Mack MC, Chapin FS III (2005) Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8:163-181

    Article  CAS  Google Scholar 

  • Sofronov MA, Volokitina AV, Kajimoto T, Matsuura Y, Uemura S (2000) Zonal peculiarities of forest vegetation controlled by fires in northern Siberia. Eurasian J For Res 1:51-59

    Google Scholar 

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manage 46:59-102

    Article  Google Scholar 

  • Strong WL, La Roi GH (1983a) Rooting depth and successional development of selected boreal forest communities. Can J For Res 13:577-588

    Article  Google Scholar 

  • Strong WL, La Roi GH (1983b) Root system morphology of common boreal forest trees in Alberta, Canada. Can J For Res 13:1164-1173

    Article  Google Scholar 

  • Tryon PR, Chapin FS III (1983) Temperature control over root growth and root biomass in taiga forest trees. Can J For Res 13:827-833

    Article  Google Scholar 

  • Van Cleve K, Barney R, Schlentner R (1981) Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems. Can J For Res 11:258-273

    Article  Google Scholar 

  • Van Cleve K, Dyrness CT, Viereck LA, Fox J, Chapin FS III, Oechel W (1983a) Taiga ecosystems in Interior Alaska. Bioscience 33:39-44

    Article  Google Scholar 

  • Van Cleve K, Oliver L, Schlentner R, Viereck LA, Dyrness CT (1983b) Productivity and nutrient cycling in taiga forest ecosystems. Can J For Res 13:747-766

    Article  Google Scholar 

  • Viereck LA (1982) Effects of fire and firelines on active layer thickness and soil temperature in interior Alaska. In: Frech HM (ed) Proceedings of the fourth Canadian permafrost conference. National Research Council Canada, Ottawa, pp 123-135

    Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches forest tree ecophysiology. CRC Press, Boca Raton, pp 477-501

    Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159-219

    Article  CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71-89

    Article  CAS  Google Scholar 

  • Wan S, Hui D, Luo Y (2001) Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol Appl 11:1349-1365

    Article  Google Scholar 

  • Wein RW, Bliss LC (1973) Changes in arctic Eriophorum Tussock communities following fire. Ecology 54:845-852

    Article  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360-364

    Article  Google Scholar 

  • Williams PJ, Smith MW (1989) The frozen earth. Fundamentals of geocryology. Cambridge University Press, Cambridge 306pp

    Book  Google Scholar 

Download references

Acknowledgments

I thank Y. Matsuura, A. Osawa, T. Miyaura, A.P. Abaimov, O.A. Zyryanova, A. S. Prokushkin, V.M. Borovikov, and other Japanese and Russian colleagues for their help during the field work. This study was partly supported by the fund of JSPS and RFBR under the Japan - “Russia Research Cooperative Program (FY2008-2009).”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kajimoto, T. (2010). Root System Development of Larch Trees Growing on Siberian Permafrost. In: Osawa, A., Zyryanova, O., Matsuura, Y., Kajimoto, T., Wein, R. (eds) Permafrost Ecosystems. Ecological Studies, vol 209. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9693-8_16

Download citation

Publish with us

Policies and ethics