Skip to main content

Respiration of Larch trees

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 209))

Abstract

Modeling of trees based on whole-plant physiology is a powerful tool to understand function and structure of forest ecosystems (Yoda et al. 1963; Hozumi and Shinozaki 1974; McCree 1983; Sievänen et al. 1988; Hagihara and Hozumi 1991; Mori and Hagihara 1991; Shugart et al. 1992; Watanabe et al. 2004). In particular, whole-plant carbon budget is a sensitive and biologically meaningful indicator to understand plant responses to environmental changes (McCree 1986, 1987; Adams et al. 1990; Gonzàlez-meler and Siedow 1999; Tjokelker et al., 1999). Single-leaf physiology does not predict plant growth and productivity, since individual leaves do not always reflect the physiological behavior of the whole-plant (Sims et al. 1994; Hikosaka et al. 1999). Nevertheless, whole-plant physiological characteristics have been measured only in crops, grasses, horticultural crops, and juvenile trees, whose body sizes are relatively small compared to mature forest trees (Geis 1971; Peters et al. 1974; Reicosky and Peters 1977; Garrity et al. 1984; Meyer et al. 1987; Dutton et al. 1988; Graham 1989; Berard and Thurtell 1990; Bower et al. 1998; Nogués et al., 2001). Because measurement of mature trees requires extensive set-up for controlling temperature and gas exchange, air conditioning units (Meyer et al. 1987) with supply of alternating current are commonly required. However, such a system is generally unavailable in the field in remote areas. In particular, boreal and tropical forests are usually located at remote sites, where elaborate measurement set-up cannot be operated. Therefore, a new system is necessary for measuring the whole-tree respiration with relatively simple equipment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MB, Edward NT, Tayler GE Jr, Skkags BL (1990) Whole-plant 14C-photosynthesis allocation in Pinus taeda: seasonal patterns at ambient and elevated ozone level. Can J For Res 20:152-158

    Article  Google Scholar 

  • Adu-bredu S, Yokota T, Hagihara A (1996a) Respiratory behaviour of young hinoki cypress (Chamaecyparis obtuse) trees under field condition. Ann Bot 77:623-628

    Article  Google Scholar 

  • Adu-bredu S, Yokota T, Hagihara A (1996b) Carbon balance of the areril parts of a young hinoki cypress (Chamaecyparis obtuse) stand. Tree Physiol 16:239-245

    PubMed  Google Scholar 

  • Adu-Bredu S, Yokota T, Hagihara A (1997) Long-term respiratory cost of maintenance and growth of field-grown young hinoki cypress (Chamaecyparis obtusa). Ann Bot 80:753-758

    Article  Google Scholar 

  • Berard RG, Thurtell GW (1990) Respiration measurements of maize plants using a whole-plant enclosure system. Agron J 82:641-643

    Article  Google Scholar 

  • Bouma TJ, Nielsen KL, Eissenstat DM, Lynch PL (1997) Soil CO2 concentration does not affect growth or root respiration in bean or citrus. Plant Cell Environ 20:1495-1505

    Article  Google Scholar 

  • Bower JH, Jobling JJ, Patterson BD, Ryan DJ (1998) A method for measuring the respiration rate and respiratory quotient of detached plant tissue. Postharvest Biol Technol 13:263-270

    Article  Google Scholar 

  • Dutton RG, Jiao J, Tsujita MJ, Grodzinski B (1988) Whole plant CO2 exchange measurements for nondestructive estimation of growth. Plant Physiol 86:355-358

    Article  CAS  PubMed  Google Scholar 

  • Garrity DP, Sullivan CY, Watts DG (1984) Rapidly determining sorghum canopy photosynthetic rates with a mobile filed chamber. Agron J 76:163-165

    Article  Google Scholar 

  • Geis JW (1971) Carbon dioxide assimilation of hardwood seedlings in relation to community dynamics in central Illinois. 1 Filed measurements of photosynthesis and respiration. Oecologia 7:276-289

    Article  Google Scholar 

  • Gonzàlez-meler MA, Siedow JN (1999) Direct inhibition of mitochondrial respiratory enzymes by elevated CO2: does it matter at the tissue or whole-plant level ? Tree Physiol 19:253-259

    PubMed  Google Scholar 

  • Graham MED (1989) The effect of increased transpiration on photosynthesis of corn. Part 1. A field portable single plant enclosure system. Agr Forest Meteorol 44:307-316

    Article  Google Scholar 

  • Hagihara A, Hozumi K (1991) Respiration. In: Ranghqavendra AS (ed) Physiology of trees. Wiley, New York, pp 87-110

    Google Scholar 

  • Hikosaka K, Sudoh S, Hirose T (1999) Light acquisition and use by individuals competing in a dense stand of an annual herbs, Xanthium canadense. Oecologia 118:388-396

    Article  Google Scholar 

  • Hozumi K, Shinozaki K (1974) Studies on the frequency distribution of the weight of individual trees in a forest stand. 4. Estimation of the total function of a forest stand and a generalized mean plant weight. Jpn J Ecol 24:207-212

    Google Scholar 

  • Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999) Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815-822

    PubMed  Google Scholar 

  • McCree KJ (1983) Carbon balance as a function of plant size in sorghum plants. Crop Sci 23:1173-1177

    Article  CAS  Google Scholar 

  • McCree KJ (1986) Measuring the whole-plant daily carbon balance. Photosynthetica 20:82-93

    CAS  Google Scholar 

  • McCree KJ (1987) Whole plant carbon balance during osmotic adjustment to drought and salinity stress. Aust J Plant Physiol 13:33-43

    Article  Google Scholar 

  • Meyer WS, Reicosky DC, Barrs HD, Shell GSG (1987) A portable chamber for measuring canopy gas exchange of crops subject to different root conditions. Agron J 79:181-184

    Article  Google Scholar 

  • Mori S, Hagihara A (1988) Respiration in stems of hinoki (Chamaecyparis obtusa ) trees. Jpn J Forest Soc 70:481-487

    Google Scholar 

  • Mori S, Hagihara A (1991) Root respiration in a hinoki (Chamaecyparis obtusa) trees. Tree Physiol 8:217-225

    PubMed  Google Scholar 

  • Mori S, Prokushkin SG, Zyryanova OA, Abaimov AP, Kajimoto T, Ueda R (1997) Non-destructive measurement of whole plant respiration including underground parts in a Siberian larch forest. In: Inoue G, Takenaka A (eds) Proceedings of the Fifth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1996. National Institute for Environmental Studies, Tsukuba, pp 115-118

    Google Scholar 

  • Nakai Y, Matsuura Y, Kajimoto T, Abaimov AP, Yamamoto S, Zyryanova OA (2008) Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost of Central Siberia during a growing season. Theor Appl Climatol 93:133-147

    Article  Google Scholar 

  • Negisi K (1974) Respiration rates in relation to diameter and age in stem or branch sections of young Pinus densiflora trees. Bull Tokyo Univ Forests 66:209-222

    Google Scholar 

  • Ninomiya I, Hozumi K (1981) Respiration of forest trees. 1. Measurement of respiration of Pins densi-thunbergii Ueki by an enclosed standing tree method. Jpn J Forest Soc 63:8-18

    Google Scholar 

  • Ninomiya I, Hozumi K (1983a) Respiration of forest trees. 2. Measurement of nighttime respiration in a Chamaecyparis obtusa plantation. Jpn J Forest Soc 65:193-200

    Google Scholar 

  • Ninomiya I, Hozumi K (1983b) Respiration of forest trees. 3. Estimation of community respiration. J Jpn Forest Soc 65:275-281

    Google Scholar 

  • Nogués S, Munné-bosch S, Casadesús J, López-carbonell M, Alegre L (2001) Daily time course of whole-shoot gas exchange rates in two drought-exposed Mediterranean shrubs. Tree Physiol 21:51-58

    PubMed  Google Scholar 

  • Peters DB, Clough BF, Graves RA, Stahl GR (1974) Measurement of dark respiration, evaporation, and photosynthesis in field plots. Agron J 66:460-462

    Article  Google Scholar 

  • Reicosky DC, Peters DB (1977) A portable chamber for rapid evapotranspiration measurements on field plots. Agron J 69:729-732

    Google Scholar 

  • Shugart HH, Smith TM, Post WM (1992) The potential for application of individual-based physiology simulation models for assessing the effects of global change. Ann Rev Ecol Syst 23:15-38

    Google Scholar 

  • Sievänen R, Bruk TE, Ek AR (1988) Construction of a stand growth model utilizing photosynthesis and respiration relationship in individual trees. Can J For Res 18:1027-1035

    Article  Google Scholar 

  • Sims DA, Gebauer RLE, Pearcy RW (1994) Scaling sun and shade photosynthetic acclimation of Alocasia macrorrhiza to whole-plant performance - 2. Simulation of carbon balance and growth at different photon flux densities. Plant Cell Environ 17:889-900

    Article  CAS  Google Scholar 

  • Sprugel DG, Ryan MG, Brooks JR, Vokt KA, Martin TN (1995) Respiration from the organ level to the stand. In: Smith WK, Hinkly TM (eds) Resource physiology of conifers. Academic, San Diego, pp 255-299

    Google Scholar 

  • Tjokelker MG, Oleksyn J, Reich PB (1999) Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Global Change Biol 49:679-691

    Article  Google Scholar 

  • Valetini R, Matteucci G, Dolman AJ, Schulz E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesalsa T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncriff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861-865

    Article  Google Scholar 

  • Watanabe T, Yokozawa M, Emori S, Takata K, Sumida A, Hara T (2004) Developing a multilayered integrated numerical model of surface physics - growing interaction (MINoSGI). Global Change Biol 10:963-982

    Article  Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi K (1963) Intraspecific competition among higher plants. 6. Self-thining in overcrowded pure stands under cultivated and natural conditions, Series D. J Inst Polytech Osaka City University 14:107-129

    Google Scholar 

  • Yokota T, Hagihara A (1996) Dependence of the aboveground CO2 exchange rate on tree size in field-grown hinoki cypress (Chamecyparis obtusa). J Plant Res 109:177-184

    Article  Google Scholar 

  • Yokota T, Hagihara A (1998) Changes in the relationship between tree size and aboveground respiration in field-grown hinoki cypress (Chamecyparis obtusa) trees over three years. Tree Physiol 18:37-43

    PubMed  Google Scholar 

  • Yokota T, Ogawa K, Hagihara A (1994) Dependence of the aboveground respiration of hinoki cypress (Chamaecyparis obtuse) on tree size. Tree Physiol 14:467-479

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mori, S., Prokushkin, S.G., Masyagina, O.V., Ueda, T., Osawa, A., Kajimoto, T. (2010). Respiration of Larch trees. In: Osawa, A., Zyryanova, O., Matsuura, Y., Kajimoto, T., Wein, R. (eds) Permafrost Ecosystems. Ecological Studies, vol 209. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9693-8_15

Download citation

Publish with us

Policies and ethics