Advertisement

Net Ecosystem Exchange of CO2 in Permafrost Larch Ecosystems

  • Y. Nakai
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 209)

Abstract

Carbon dioxide exchange between the ecosystem and the atmosphere would be a major component for carbon budget at boreal forests. In this chapter, net ecosystem exchange (NEE) of CO2 at a permafrost larch ecosystem will be discussed, based on a micrometeorological (tower flux) measurement. Movement of CO2 from ecosystem to atmosphere is customarily labeled as positive. The micrometeorological measurement can obtain NEE with a half-hourly time-resolution at an ecosystem scale. These temporal and spatial scales are advantages in carbon, water, and energy budget studies over ecological measurements.

Keywords

Photosynthetic Active Radiation Larch Forest Permafrost Region Energy Balance Closure Larch Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I appreciate the assistance of Y. Matsuura, T. Kajimoto, and A. Osawa for discussions and manuscript preparation. I am grateful to late A.P. Abaimov, O.A. Zyryanova, and colleagues of V.N. Sukachev Institute of Forest for their help in various aspects of the field work. Thanks are due to V.M. Borovikov and colleagues of Evenkia Department of Forestry in Tura for their support in logistics and instrumentation. I also thank T. Yorisaki, H. Tanaka, and staff of Climatec Inc. for system integration and instrumentation. I acknowledge Y. Ohtani, T. Watanabe, and Y. Yasuda for providing software resources. S. Yamamoto and N. Saigusa encouraged me greatly. This research was funded by the “Global environment research fund S-1,” as “Integrated Study for Terrestrial Carbon Management of Asia in the twentyfirst Century based on Scientific Advancements (FY2002-2006).”

References

  1. Abaimov AP, Lesinski JA, Martinsson O, Milyutin LI (1998) Variability and ecology of Siberian larch species. Swedish University of Agricultural Sciences, Department of Silviculture Reports 43, Umeå, p 118Google Scholar
  2. Abaimov AP, Erkalov AV, Prokushkin SG, Matsuura Y, Osawa A, Kajimoto T, Takenaka A (2000) The conservation and quality of Gmelin larch seeds in cryolithic zone of Central Siberia. In: Inoue G, Takenaka A (eds) Proceedings of the Eighth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1999. National Institute for Environmental Studies, Tsukuba, pp 3-9Google Scholar
  3. Aurela M, Tuovinen JP, Laurila T (2001) Net CO2 exchange of a subarctic mountain birch ecosystem. Theor Appl Climatol 70:135-148CrossRefGoogle Scholar
  4. Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agr For Meteorol 83:147-170CrossRefGoogle Scholar
  5. Black TA, den Hartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996) Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biol 2:219-229CrossRefGoogle Scholar
  6. Bondarev A (1997) Age distribution patterns in open boreal Dahurican larch forests of Central Siberia. Forest Ecol Manage 93:205-214CrossRefGoogle Scholar
  7. Dolman AJ, Maximov TC, Moors EJ, Maximov AP, Elbers JA, Kononov AV, Waterloo MJ, van der Molen MK (2004) Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix cajanderii) on permafrost. Biogeosciences 1:133-146CrossRefGoogle Scholar
  8. Foken Th, Wichura B (1996) Tools for quality asessment of surface-based flux measurements. Agr For Meteorol 78:83-105CrossRefGoogle Scholar
  9. Goulden ML, Daube BC, Fan S-M, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997) Physiological responses of a black spruce forest to weather. J Geophys Res 120:28987-28996CrossRefGoogle Scholar
  10. Grelle A, Burba G (2007) Fine-wire thermometer to correct CO2 fluxes by open-path analyzers for artificial density fluctuations. Agric For Meteorol 147:48-57CrossRefGoogle Scholar
  11. Halldin S, Gryninig S-E, Gottschalk L, Jochum A, Lundin L-C, Van de Griend AA (1999) Energy, water and carbon exchange in a boreal forest landscape — NOPEX experiences. Agr Forest Meteorol 98-99:5-29CrossRefGoogle Scholar
  12. Hirano T, Hirata R, Fujinuma Y, Saigusa N, Yamamoto S, Harazono Y, Takada M, Inukai K, Inoue G (2003) CO2 and water vapor exchange of a larch forest in northern Japan. Tellus 55B:244-257CrossRefGoogle Scholar
  13. Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL (1994) Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 75:134-150CrossRefGoogle Scholar
  14. Hollinger DY, Kelliher FM, Schulze E-D, Vygodskaya NN, Varlargin A, Milukova I, Byers JN, Sogatchev A, Hunt JE, McSeveny TM, Kobak KI, Bauer G, Arneth A (1995) Initial assessment of multi-scale measurements of CO2 and H2O flux in the Siberian taiga. J Biogeogr 22:425-431CrossRefGoogle Scholar
  15. Hollinger DY, Kelliher FM, Schulze ED, Bauer G, Arneth A, Byers JN, Hunt JE, McSeveny TM, Kobak KI, Milukova I, Sogatchev A, Tatarinov F, Varlargin A, Ziegler W, Vygodskaya NN (1998) Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agr For Meteorol 90:291-306CrossRefGoogle Scholar
  16. Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J Geophys Res 120:28953-28966CrossRefGoogle Scholar
  17. Jarvis PG, Saugier B, Schulze E-D (2001) Productivity of boreal forests. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, New York, pp 211-244CrossRefGoogle Scholar
  18. Kajimoto T, Matsuura Y, Sofronov MA, Volokitina AV, Mori S, Osawa A, Abaimov AP (1999) Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol 19:815-822PubMedGoogle Scholar
  19. Kajimoto T, Matsuura Y, Osawa A, Prokushkin AS, Sofronov MA, Abaimov AP (2003) Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia. Plant Soil 255:281-292CrossRefGoogle Scholar
  20. Kajimoto T, Matsuura Y, Osawa A, Abaimov AP, Zyryanova OA, Ishii A, Kondo K, Tokuchi N (2004) Biomass and spatial patterns of individual root system in Larix gmelinii stands on continuous permafrost region of central Siberia. In: Tanaka H (ed) Proceeding of the Fifth International Conference on Global Change: Connection to the Arctic (GCCA-5). Tsukuba University, Tsukuba, pp 187-190Google Scholar
  21. Kajimoto T, Matsuura Y, Osawa A, Abaimov AP, Zyryanova OA, Isaev AP, Yefremov DP, Mori S, Koike T (2006) Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia. For Ecol Manage 222:314-325CrossRefGoogle Scholar
  22. Kajimoto T, Osawa A, Matsuura Y, Abaimov AP, Zyryanova OA, Kondo K, Tokuchi N, Hirobe M (2007) Individual-based measurement and analysis of root system development: case studies for Larix gmelinii trees growing on the permafrost region in Siberia. J For Res 12:103-112CrossRefGoogle Scholar
  23. Kelliher FM, Hollinger DY, Schulze E-D, Vygodskaya NN, Byers JN, Hunt JE, McSeveny TM, Milukova I, Sogatchev A, Varlargin A, Ziegler W, Arneth A, Bauer G (1997) Evaporation from an eastern Siberian larch forest. Agr For Meteorol 85:135-147CrossRefGoogle Scholar
  24. Kujansuu J, Yasue K, Koike T, Abaimov AP, Kajimoto T, Takeda T, Tokumoto M, Matsuura Y (2007) Responses of ring widths and maximum densities of Larix gmelinii to climate on contrasting north- and south-facing slopes in central Siberia. Ecol Res 22:582-592CrossRefGoogle Scholar
  25. Li S-G, Asanuma J, Kotani A, Eugster W, Davaa G, Oyunbaatar D, Sugita M (2005) Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia. J Geophys Res. doi: 10.1029/2004JD005453 Google Scholar
  26. Lloyd J, Shibistova OB, Zolotoukhine D, Kolle O, Arneth A, Wirth C, Styles JM, Tchebakova NM, Schulze E-D (2002) Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B:590-610CrossRefGoogle Scholar
  27. Lydolph PE (1977) Climates of the Soviet Union. World survey of climatology, vol 7. Elsevier, Amsterdam, p 417Google Scholar
  28. Machimura T, Kobayashi Y, Iwahana G, Hirano T, Lopez L, Fukuda M (2005) Change of carbon dioxide budget during three years after deforestation in eastern Siberian larch forest. J Agric Meteorol 60:653-656Google Scholar
  29. Markkanen T, Rannik Ü, Keronen P, Suni T, Vesala T (2001) Eddy covariance fluxes over a boreal Scots pine forest. Boreal Environ Res 6:65-78Google Scholar
  30. Matsuura Y, Abaimov AP (2000) Nitrogen mineralization in larch forest soils of continuous permafrost region, Central Siberia: An implication for nitrogen economy of a larch forest stand. In: Inoue G, Takenaka A (eds) Proceedings of the Eighth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1999. National Institute for Environmental Studies, Tsukuba, pp 129-134Google Scholar
  31. Matsuura Y, Kajimoto T, Osawa A, Abaimov AP (2005) Carbon storage in larch ecosystems in continuous permafrost region of Siberia. Phyton 45:51-54Google Scholar
  32. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43:231-245CrossRefGoogle Scholar
  33. Meroni M, Mollicone D, Belelli L, Manca G, Rosellini S, Stivanello S, Tirone G, Zompanti R, Tchebakova N, Schulze ED, Valentini R (2002) Carbon and water exchanges of regenerating forests in central Siberia. For Ecol Manage 169:115-122CrossRefGoogle Scholar
  34. Nakai Y, Matsuura Y, Kajimoto T, Abaimov AP, Yamamoto S (2004) CO2 flux measurements above a larch forest in a continuous permafrost region of Central Siberia using eddy covariance techniques (preliminary results). In: Tanaka H (ed) Proceeding of the Fifth International Conference on Global Change Connection to the Arctic (GCCA5). Tsukuba University, Tsukuba, pp 160-163Google Scholar
  35. Nakai Y, Matsuura Y, Kajimoto T, Abaimov AP, Yamamoto S (2005) Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost of Central Siberia during two Growing Seasons. In: Proceedings of the Sixth International Conference on Global Change Connection to the Arctic (GCCA6), Tokyo, pp 169-172Google Scholar
  36. Nakai T, van der Molen MK, Gash JHC, Kodama Y (2006) Correction of sonic anemometer angle of attack errors. Agr For Meteorol 136:19-30CrossRefGoogle Scholar
  37. Nakai Y, Matsuura Y, Kajimoto T, Zyryanova OA, Yamamoto S (2007) Water and CO2 exchange at a Gmelin larch forest on continuous permafrost of Central Siberia during growing Seasons. Proceedings of the Seventh International Conference on Global Change Connection to the Arctic (GCCA7). International Arctic Research Center, University of Alaska, Fairbanks, pp 263-266Google Scholar
  38. Nakai Y, Matsuura Y, Kajimoto T, Abaimov AP, Yamamoto S, Zyryanova OA (2008) Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost of Central Siberia during a growing season. Theor Appl Climatol 93:133-147CrossRefGoogle Scholar
  39. Nordstroem C, Soegaard H, Christensen TR, Friborg T, Hansen BU (2001) Seasonal carbon dioxide balance and respiration of a high-arctic fen ecosystem in NE-Greenland. Theor Appl Climatol 70:149-166CrossRefGoogle Scholar
  40. Ohta T (2005) Spatial variation of the parameters of canopy conductance model in temperate and boreal forests. Proceedings of the International Semi-Open Workshop on C/H2O/Energy Balance and Climate over Boreal Regions with Special Emphasis on Eastern Eurasia. Yakutsk, Russia, pp 87-90Google Scholar
  41. Ohta T, Hiyama T, Tanaka H, Kuwada T, Maximov TC, Ohata T, Fukushima Y (2001) Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia. Hydrol Proc 15:1459-1476CrossRefGoogle Scholar
  42. Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ, Tanaka H, Toba T, Yabuki H (2008) Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998-2006). Agr For Meteorol. doi: 10.1016/j.agrformet.2008.04.012 Google Scholar
  43. Ohtani Y, Mizoguchi Y, Watanabe T, Yasuda Y (2005) Parameterization of NEP for gap filling in a cool-temperate coniferous forest in Fujiyoshida, Japan. J Agric Meteorol 60:769-772Google Scholar
  44. Osawa A, Abaimov AP, Zyryanova OA (2000) Tree size-density relationship and size-dependent mortality in Larix gmelinii stands. In: Inoue G, Takenaka A (eds) Proceedings of the Eighth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1999, Tsukuba, pp 36-41, 2000Google Scholar
  45. Osawa A, Abaimov AP, Matsuura Y, Kajimoto T, Zyryanova OA (2003) Anomalous patterns of stand development in larch forest of Siberia. Tohoku Geophysic J (Sci Rep Tohoku Univ Ser 5) 36:471-474Google Scholar
  46. Osawa A, Abaimov AP, Kajimoto T, Matsuura Y, Zyryanova OA, Tokuchi N, Kondo K, Hirobe M (2004) Long-term development of larch forest ecosystems on continuous permafrost of Siberia: structural constraints and implications to carbon accumulation. In: Tanaka H (ed) Proceeding of the Fifth International Conference on Global Change: Connection to the Arctic (GCCA-5). Tsukuba University, Tsukuba, pp 53-56Google Scholar
  47. Röser C, Montagnani L, Schulze E-D, Mollicone D, Kolle O, Meroni M, Papale D, Marchesini LB, Federici S, Valentini R (2002) Net CO2 exchange rates in three different successional stages of the “Dark Taiga” of central Siberia. Tellus 54B:642-654CrossRefGoogle Scholar
  48. Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 26:1-98CrossRefGoogle Scholar
  49. Schulze E-D, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Luhker B, Mund M, Knohl A, Milyukova I, Schulze W, Ziegler W, Varlagin A, Sogachov A, Valentini R, Dore S, Grigoriev S, Kolle O, Tchebakova N, Vygodskaya NN (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol 5:703-722CrossRefGoogle Scholar
  50. Sellers PJ, Hall FG, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Ranson KJ, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald D, Jarvis PG, Gower ST, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) BOREAS in 1997: Experiment overview, scientific results, and future directions. J Geophys Res 120:28731-28769CrossRefGoogle Scholar
  51. Shibistova O, Lloyd J, Zrazhevskaya G, Arneth A, Kolle O, Knohl A, Astrakhantceva N, Shijneva I, Schmerler J (2002) Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus 54B:568-589CrossRefGoogle Scholar
  52. Tokuchi N, Kondo K, Hirobe M, Matsuura Y, Kajimoto T (2004) N cycling at Larix stand in Tura, Central Siberia -Spatial variability of soil N dynamics- In: Tanaka H (ed) Proceeding of the Fifth International Conference on Global Change: Connection to the Arctic (GCCA-5). Tsukuba University, Tsukuba, pp 207-209Google Scholar
  53. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14:512-526CrossRefGoogle Scholar
  54. Wang H, Saigusa N, Yamamoto S, Kondo H, Hirano T, Toriyama A, Fujinuma Y (2004) Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan. Atmos Environ 38:7021-7032CrossRefGoogle Scholar
  55. Wang H, Zu Y, Saigusa N, Yamamoto S, Kondo H, Yang F, Wang W (2005) CO2, water vapor and energy fluxes in a larch forest in northeast China. J Agric Meteorol 60:549-552Google Scholar
  56. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapor transfer. Q J Roy Meteorol Soc 106:85-100CrossRefGoogle Scholar
  57. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agr For Meteorol 113:223-243CrossRefGoogle Scholar
  58. Zyryanova OA, Shitova SA (1999) Spatial distribution regularities of the central Evenkain larch forests: a cartographic model. In: Fukuda M (ed) Proceedings of the Fourth Symposium on the Joint Siberian Permafrost Studies between Japan and Russian in 1995. Hokkaido University, Sapporo, pp 65-69Google Scholar
  59. Zyryanova OA, Abaimov AP, Bugaenko TN, Bugaenko NN (2000) Larch plant associations diversity of Central Siberian cryolithic zone and the development of the database. In: Inoue G, Takenaka A (eds) Proceedings of the eighth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1999. National Institute for Environmental Studies, Tsukuba, pp 83-89Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Y. Nakai
    • 1
  1. 1.Department of Meteorological EnvironmentForestry and Forest Products Research InstituteTsukubaJapan

Personalised recommendations