Skip to main content

Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems

  • Chapter
Fundamental Problems in Computing

Abstract

We study network-design problems with two different design objectives: the total cost of the edges and nodes in the network and the maximum degree of any node in the network. A prototypical example is the degree-constrained node-weighted Steiner tree problem: We are given an undirected graph G(V,E), with a non-negative integral function d that specifies an upper bound d(v) on the degree of each vertex vV in the Steiner tree to be constructed, nonnegative costs on the nodes, and a subset of k nodes called terminals. The goal is to construct a Steiner tree T containing all the terminals such that the degree of any node v in T is at most the specified upper bound d(v) and the total cost of the nodes in T is minimum. Our main result is a bicriteria approximation algorithm whose output is approximate in terms of both the degree and cost criteria—the degree of any node vV in the output Steiner tree is O(d(v)log k) and the cost of the tree is O(log k) times that of a minimum-cost Steiner tree that obeys the degree bound d(v) for each node v. Our result extends to the more general problem of constructing one-connected networks such as generalized Steiner forests. We also consider the special case in which the edge costs obey the triangle inequality and present simple approximation algorithms with better performance guarantees.

A preliminary version of this paper appeared as [26]. R. Ravi’s research was supported by a NSF CAREER grant 96-25297. The work by Madhav Marathe was supported by the Department of Energy under Contract W-7405-ENG-36. The last three authors were supported by NSF Grants CCR 89-03319, CCR 90-06396, CCR 94-06611 and CCR 97-34936.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized Steiner problem on networks. SIAM J. Computing, 24:440–456, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory and Algorithms. Prentice Hall, Englewood Cliffs, 1993.

    Google Scholar 

  3. S. Arora and M. Sudan. Improved low-degree testing and its applications. In Proc. 29th Annual ACM Symposium on Theory of Computing (STOC’97), pages 485–496, 1997.

    Google Scholar 

  4. B. Boldon, N. Deo, and N. Kumar. Minimum weight degree constrained spanning tree problem: Heuristics and implementation on a SIMD parallel machine. Parallel Computing, 22(3):369–382, 1996.

    Article  MATH  Google Scholar 

  5. P. M. Camerini, G. Galbiati, and F. Maffioli. The complexity of weighted multi-constrained spanning tree problems. In LOVSZEM: Colloquium on the Theory of Algorithms. North-Holland, Amsterdam, 1985.

    Google Scholar 

  6. W. Cook, W. Cunningham, W. Pulleybank, and A. Schrijver. Combinatorial Optimization. Wiley–Interscience Series on Discrete Mathematics and Optimization. Wiley, New York, 1998.

    MATH  Google Scholar 

  7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw–Hill, Cambridge, 1990.

    MATH  Google Scholar 

  8. N. Deo and S. L. Hakimi. The shortest generalized Hamiltonian tree. In Proc. 6th Annual Allerton Conference, pages 879–888, 1968.

    Google Scholar 

  9. C. W. Duin and A. Volgenant. Some generalizations of the Steiner problem in graphs. Networks, 17:353–364, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Hochbaum (Editor). Approximation Algorithms for NP-Hard Problems. PWS, Boston, 1997.

    Google Scholar 

  11. S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, and N. Young. A network flow technique for finding low-weight bounded-degree spanning trees. J. Algorithms, 24(2):310–324, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Fischer. Optimizing the degree of minimum weight spanning trees. Technical Report TR 93-1338, Department of Computer Science, Cornell University, Ithaca, New York, Apr. 1993.

    Google Scholar 

  13. M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within one of optimal. J. Algorithms, 17(3):409–423, 1994.

    Article  MathSciNet  Google Scholar 

  14. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  15. M. Goemans and D. Williamson. A general approximation technique for constrained forest problems. SIAM J. Computing, 24:296–317, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Iwainsky, E. Canuto, O. Taraszow, and A. Villa. Network decomposition for the optimization of connection structures. Networks, 16:205–235, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Khuller, B. Raghavachari, and N. Young. Low-degree spanning trees of small weight. SIAM J. Computing, 25(2):355–368, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Klein and R. Ravi. A nearly best-possible approximation for node-weighted Steiner trees. J. Algorithms, 19(1):104–115, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with application to approximation algorithms. J. ACM, 46(6):787–832, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J. ACM, 41(5):960–981, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Bicriteria network design problems. J. Algorithms, 28(1):142–171, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete & Computational Geometry, 8(3):265–293, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Papadimitriou and U. Vazirani. On two geometric problems related to the traveling salesman problem. J. Algorithms, 4:231–246, 1984.

    Article  MathSciNet  Google Scholar 

  24. R. Ravi. Rapid rumor ramification. In Proc. 35th Annual IEEE Symp. Foundations of Computer Science (FOCS’94), pages 202–213, 1994.

    Google Scholar 

  25. R. Ravi, B. Raghavachari, and P. N. Klein. Approximation through local optimality: Designing networks with small degree. In Proc. 12th Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FST & TCS). Lecture Notes in Computer Science, volume 652, pages 279–290. Springer, Berlin, 1992.

    Google Scholar 

  26. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Many birds with one stone: Multi-objective approximation algorithms. In Proc. 25th Annual ACM Symposium on Theory of Computing (STOC’93), pages 438–447, 1993.

    Google Scholar 

  27. R. Raz and S. Safra. A sub-constant error-probability low-degree test and a sub-constant error-probability PCP characterization of NP. In Proc. 29th Annual ACM Symposium on Theory of Computing (STOC’97), pages 475–484, 1997.

    Google Scholar 

  28. D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An analysis of several heuristics for the traveling salesman problem. SIAM J. Computing, 6(3):563–581, 1977.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B. (2009). Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems. In: Ravi, S.S., Shukla, S.K. (eds) Fundamental Problems in Computing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9688-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9688-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9687-7

  • Online ISBN: 978-1-4020-9688-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics