Advertisement

Phoretic Mites and Carcasses: Acari Transported by Organisms Associated with Animal and Human Decomposition

  • M. Alejandra Perotti
  • Henk R. Braig
  • M. Lee Goff
Chapter

Abstract

Ephemeral and fluctuant, the fauna associated with a corpse provides a rich diversity of species. Several groups of arthropods are known to visit a carcass of a vertebrate at its various stages of decay; however, forensic investigations have so far been primarily limited to insects, focussing mainly on flies (Diptera) and beetles (Coleoptera) as often the largest and most persistent representatives. These insects might fly, walk or occasionally swim to reach the corpse and sooner or later abandon it in a similar way. Most will build transitional food webs that will lead to a faunal succession of species that will reflect the degree of decay under given environmental conditions.

Keywords

Mite Species Dung Beetle Musca Domestica Phoretic Mite Large Carcass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

MAP and HRB wish to thank the Leverhulme Trust for support of this work.

References

  1. Aguiar NO, Buhrnheim PF (1998) Phoretic pseudoscorpions associated with flying insects in Brazilian Amazonia. J Arachnol 26:452–459Google Scholar
  2. Anderson GS, Vanlaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625Google Scholar
  3. Arnaldos MI, Garcia MD, Romera E, Presa JJ, Luna A (2005) Estimation of postmortem interval in real cases based on experimentally obtained entomological evidence. Forensic Sci Int 149:57–65PubMedCrossRefGoogle Scholar
  4. Athias-Binche F (1984) La phorésie chez les acariens uropodides (Anactinotriches), une stratégie écologique originale [Phoresy in uropodid mites (Anactinotrichida), an interesting ecological strategy]. Acta Oecol, Oecol Generalis 5:119–133Google Scholar
  5. Athias-Binche F (1990) Sur le concept de de symbiose - l’example de la phorésie chez les acariens et son évolution vers le parasitisme ou le mtualisme [On the concept of symbiosis - the example of phoresy in mites and its evolution towards parasitism or mutualism]. Bull Soc Zool France 115:77–98Google Scholar
  6. Athias-Binche F (1994) La Phorésie chez les Acariens - Aspects Adaptatifs et Evolutifs [Phoresy in acarina - adaptive and evolutionary aspects]. Editions du Castillet, PerpignanGoogle Scholar
  7. Athias-Binche F, Morand S (1993) From phoresy to parasitism: the example of mites and nematodes. Res Rev Parasitol 53:73–79Google Scholar
  8. Bajerlein D, Błoszyk J (2003) Two cases of hyperphoresy in mesostigmatic mites (Acari: Gamasida: Uropodidae, Macrochelidae). Biol Lett (Warsaw) 40:135–136Google Scholar
  9. Baker AS (1990) Two new species of Lardoglyphus Oudemans (Acari, Lardoglyphidae) found in the gut contents of human mummies. J Stored Prod Res 26:139–148CrossRefGoogle Scholar
  10. Benecke M (2001) A brief history of forensic entomology. Forensic Sci Int 120:2–14PubMedCrossRefGoogle Scholar
  11. Bennett SG, Webb JP Jr (1985) A possible human infestation by Eutrombicula belkini (Gould) (Acari: Trombiculidae) in Laguna Beach, California. Bull Soc Vector Ecol 10:118–121Google Scholar
  12. Binns ES (1982) Phoresy as migration - some functional aspects of phoresy in mites. Biol Rev Cambridge Philos Soc 57:571–620CrossRefGoogle Scholar
  13. Bloszyk J, Klimczak J, Lesniewska M (2006) Phoretic relationships between Uropodina (Acari: Mesostigmata) and centipedes (Chilopoda) as an example of evolutionary adaptation of mites to temporary microhabitats. Eur J Entomol 103:699–707Google Scholar
  14. Błoszyk J, Bajerlein D (2003) Two cases of hyperphoresy in mesostigmatic mites (Acari: Gamasida: Uropodidae, Macrochelidae). Biol Lett 40:135–136Google Scholar
  15. Bourel B, Martin-Bouyer L, Hedouin V, Cailliez J-C, Derout D, Gosset D (1999) Necrophilous insect succession on rabbit carrion in sand dune habitats in northern France. J Med Entomol 36:420–425PubMedGoogle Scholar
  16. Braack LEO (1986) Arthropods associated with carcasses in the northern Kruger National Park. S Af J Wildlife Res 16:91–98Google Scholar
  17. Brouardel P (1879). De la détermination de l’époque de la naissance et de la mort d’un nouveau-née, faite à l’aide de la présence des acares et des chenilles d’aglosses dans cadavre momifié [Determination of the time of birth and of death of a new-born child, made using the presence of mites and Aglossa caterpillars on the mummified corpse]. Annales d’Hygiène Publique et de Médecine Légale, (série 3) 2:153–158Google Scholar
  18. Brown JM, Wilson DS (1992) Local specialization of phoretic mites on sympatric carrion beetle hosts. Ecology 73:463–478CrossRefGoogle Scholar
  19. Byrd JH, Castner JL (2001) Forensic Entomology: the Utility of Arthropods in Legal Investigations. CRC, Boca RatonCrossRefGoogle Scholar
  20. Centeno N, Maldonado M, Oliva A (2002) Seasonal patterns of arthropods occurring on sheltered and unsheltered pig carcasses in Buenos Aires Province (Argentina). Forensic Sci Int 126:63–70PubMedCrossRefGoogle Scholar
  21. Centeno N, Perotti MA (1999) Acaros vinculados a procesos de descomposición de cadáveres y sus posibles asociaciones foréticas [Acari linked to processes of decomposition of cadavers and their possible phoretic associations]. Paper presented at the XIX Reunión Argentina de Ecología, Tucumán, ArgentinaGoogle Scholar
  22. Ciccolani B (1979) The intrinsic rate of natural increase in dung macrochelid mites, predators of Musca domestica eggs. Bolletino Zool 46:171–178Google Scholar
  23. Ciccolani B, Passariello S, Petrelli G (1977) Influenza della temperatura sull’incremento di popolazione in Macrocheles subbadius (Acarina: Mesostigmata) [The infuence of temperature on the increment of populations of Macrocheles subbadius (Acarina: Mesostigmata)]. Acarologia 19:563–578Google Scholar
  24. Colloff MJ, Hopkin SP (1986) The ecology, morphology and behavior of Bakerdania elliptica (Acari, Prostigmata, Pygmephoridae), a mite associated with terrestrial isopods. J Zool A 208:109–124Google Scholar
  25. Colwell RK (2000) Rensch’s rule crosses the line: Convergent allometry of sexual size dimorphism in hummingbirds and flower mites. Am Nat 156:495–510CrossRefGoogle Scholar
  26. de Moor FC (1999) Phoretic association of blackflies (Diptera: Simuliidae) with heptageniid mayflies (Ephemeroptera: Heptageniidae) in South Africa. Af Entomol 7:154–156Google Scholar
  27. Disney RHL (1997) Fantastic flies and flights of fancy. J Biol Educ 31:9–48Google Scholar
  28. Disney RHL (2005) Duration of development of two species of carrion-breeding scutte flies and forensic implications. Med Vet Entomol 19:229–235PubMedCrossRefGoogle Scholar
  29. Domrow R (1981) A small lizard stifled by phoretic deutonymphal mites (Uropodina). Acarologia 22:247–252Google Scholar
  30. Eickwort GC (1990) Associations of mites with social insects. Ann Rev Entomol 35:469–488CrossRefGoogle Scholar
  31. Elzinga RJ, Rittenmeyer CW, Berghoff SM (2006) Army ant mites: the most specialized mites found on any social insect. Paper presented at the The IUSSI 2006 Congress, Washington, DCGoogle Scholar
  32. Fain A (1998a) Description of mites (Acari) phoretic on Phoridae (Insecta: Diptera) with description of four new species of the genus Uroseius Berlese (Parasitiformes, Uropodina, Polyaspididae). Int J Acarol 24:213–220CrossRefGoogle Scholar
  33. Fain A (1998b) New mites (Acari) phoretic on Phoridae and Ephydridae (Diptera) from Thailand. Bull Inst R Sci Nat Belg Entomol 68:53–61Google Scholar
  34. Fain A, Beaucournu J-C (1993) Hypopi of astigmatic mites (Acari) phoretic on fleas (Siphonaptera) of mammals and birds. Bull Entomol 63:77–93Google Scholar
  35. Fain A, Greenwood MT (1991) Notes on a small collection of mites Acari phoretic on Diptera mainly Phoridae from the British Isles. Bull Inst R Sci Nat Belg Entomol 61:193–197Google Scholar
  36. Fain A, Laurence BR (1974) Guide to heteromorphic deutonymphs or hypopi (Acarina, Hypoderidae) living under skin of birds with description of Ibisidectes debilis Gen and sp nov from scarlet ibis. J Nat Hist 8:223–230CrossRefGoogle Scholar
  37. Farish DJ, Axtell RC (1971) Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13:16–29Google Scholar
  38. Garrido C, Casanueva ME (1995). Acaros foréticos e hiperforéticos sobre Bombus dahlbohmi Guerin, 1835 (Hym., Apidae) [Phoretic and hyperphoretic mites on Bombus dahlbohmi Guerin, 1835 (Hym., Apidae)]. Bol Soc Biol 66:53–55Google Scholar
  39. Gaume L, Matile-Ferrero D, McKey D (2000) Colony formation and acquisition of coccoid trophobionts by Aphomomyrmex afer (Formicinae): co-dispersal of queens and phoretic mealybugs in an ant-plant-homopteran mutualism? Insect Soc 47:84–91CrossRefGoogle Scholar
  40. Gibbs JP, Stanton EJ (2001) Habitat fragmentation and arthropod community change: Carrion beetles, phoretic mites, and flies. Ecol Appl 11:79–85CrossRefGoogle Scholar
  41. Goff ML (1989) Gamasid mites as potential indicators of postmortem interval. In: Channabasavanna GP, Viraktamath CA (eds) Progress in Acarology, vol 1. Oxford and IBH Publishing, New Delhi, pp 443–450Google Scholar
  42. Goff ML (1991) Use of acari in establishing a postmortem interval in a homicide case on the island of Oahu, Hawaii. In: Dusbábek E, Bukva V (eds) Modern Acarology, vol 1. SPB Academic Publishing, The Hague, pp 439–442Google Scholar
  43. Goff ML (2009). Early postmortem changes and stages of decomposition in exposed cadavers. Exp Appl Acarol 49:21–36CrossRefGoogle Scholar
  44. Goff ML, Early M, Odom CB, Tullis K (1986) A preliminary checklist of arthropods associated with exposed carrion in the Hawaiian islands, USA. Proc Hawaiian Entomol Soc 26:53–57Google Scholar
  45. Goff ML, Odom CB (1987) Forensic entomology in the Hawaiian Islands: three case studies. Am J Forensic Med Pathol 8:45–50PubMedCrossRefGoogle Scholar
  46. Graf Vitzthum H (1933) Die endoparasitische Deutonymphe von Pterolichus nisi [The endoparasitic deutonymph of Pterolichus nisi]. Z Parasitenkunde 6:151–169CrossRefGoogle Scholar
  47. Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central European urban habitat. J Med Entomol 41:511–523PubMedCrossRefGoogle Scholar
  48. Greenberg B (1961) Mite orientation and survival on flies. Nature 190:107–108CrossRefGoogle Scholar
  49. Greenberg B, Carpenter PD (1960) Factors in phoretic association of a mite and fly. Science 132:738–739PubMedCrossRefGoogle Scholar
  50. Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12:235–240PubMedCrossRefGoogle Scholar
  51. Houck MA, OConnor BM (1991) Ecological and evolutionary significance of phoresy in the Astigmata. Ann Rev Entomol 36:611–636CrossRefGoogle Scholar
  52. Hunter PE, Rosario RMT (1988) Associations of Mesostigmata with other arthropods. Ann Rev Entomol 11:393–418CrossRefGoogle Scholar
  53. Hunziker H (1919). Über die Befunde bei Leichenausgrabungen auf den Kirchhöfen Basels. Unter besonderer Berücksichtung der Fauna und Flora der Gräber [About the findings during excavations of corpses on the cemeteries of Basel, especially of the fauna and flora of graves]. Frankf Z Pathol 22:147–207Google Scholar
  54. Hyatt KH (1980). Mites of the subfamily Parasitinae (Mesostigmata: Parasitidae) in the British Isles. Bull Brit Mus (Nat Hist) Zool 38:237–378Google Scholar
  55. Iverson K, Oconnor BM, Ochoa R, Heckmann R (1996) Lardoglyphus zacheri (Acari: Lardoglyphidae), a pest of museum dermestid colonies, with observations on its natural ecology and distribution. Ann Entomol Soc Am 89:544–549Google Scholar
  56. Jalil M, Rodriguez JG (1970) Studies of behaviour of Macrocheles muscaedomesticae (Acarina: Macrochelidae) with emphasis on its attraction to the house fly. Ann Entomol Soc Am 63:738–744PubMedGoogle Scholar
  57. Korn W (1983) Zur Vergesellschaftung der Gamasidenarten Poecilochirus carabi G. u. R. Canestrini 1882 (= P. necrophori Vitzthum 1930), P. austroasiaticus Vitzthum 1930 und P. subterraneus Müller 1859 mit Aaskäfern aus der Familie der Silphidae [On the association between gamasid mites, Poecilochirus carabi G. u. R. Canestrini 1882 (= P. necrophori Vitzthum 1930), P. austroasiaticus Vitzthum 1930 and P. subterraneus Müller 1859 with carrion beetles (Silphidae)]]. Spixiana 6:251–280Google Scholar
  58. Krantz GW, Poinar GO Jr (2004) Mites, nematodes and the multimillion dollar weevil. J Nat Hist 38:135–141CrossRefGoogle Scholar
  59. Krantz GW, Whitaker JO Jr (1988) Mites of the genus Macrocheles (Acari: Macrochelidae) associated with small mammals in North America. Acarologia 29:225–259Google Scholar
  60. Leclercq M (1999). Entomologie et médecine légale. Importance des phoridés (Diptères) sur cadavres humains [Entomology and forensic medicine. Importance of phorid flies on human corpses]. Annales de la Société Entomologique de France 35 (Suppl.):566–568Google Scholar
  61. Leclercq M, Vaillant F (1992) Entomologie et médecine légale: une observation inédite [Forensic entomology - an original case]. Ann Soc Entomol France 28:3–8Google Scholar
  62. Leclercq M, Verstraeten C (1988a) Entomologie et médecine légale. Datation de la mort. Acariens trouvés sur des cadavres humains [Entomology and forensic medicine. Determination of the time of death. Acari found on human cadavers]. Bull Ann Soc R Belge Entomol 124:195–200Google Scholar
  63. Leclercq M, Verstraeten C (1988b). Entomologie et médicine légale. Datation de la mort: insectes et autres arthropodes trouvés sur les cadavres humains [Entomology and forensic medicine, determination of the time of death: insects and other arthropods on human cadavers]. Bull Ann Soc R Belge Entomol 124:311–317Google Scholar
  64. Lindquist EE (1975) Associations between mites and other arthropods in forest floor habitats. Can Entomol 107:425–437CrossRefGoogle Scholar
  65. Lombardero MJ, Ayres MP, Hofstetter RW, Moser JC, Lepzig KD (2003) Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae). Oikos 102:243–252CrossRefGoogle Scholar
  66. Lopez LCS, Filizola B, Deiss I, Rios RI (2005) Phoretic behaviour of bromeliad annelids (Dero) and ostracods (Elpidium) using frogs and lizards as dispersal vectors. Hydrobiologia 549:15–22CrossRefGoogle Scholar
  67. Luzzatto D, Pastorino G (2006) Adelomelon brasiliana and Antholoba achates: A phoretic association between a volutid gastropod and a sea anemone in Argentine waters. Bull Mar Sci 78:281–286Google Scholar
  68. Mašán P (1999) Acarina associated with burying and carrion beetles (Coleoptera, Silphidae) and description of Poecilochirus mrciaki sp.n. (Mesostigmata, Gamasina). Biologia 54:515–524Google Scholar
  69. McGarry JW, Baker AS (1997) Observations on the mite fauna associated with adult Stomoxys calcitrans in the UK. Med Vet Entomol 11:159–164PubMedCrossRefGoogle Scholar
  70. Mégnin P (1887) La faune des tombeaux [The fauna of graves]. C R Acad Sci Hebd 105:948–951Google Scholar
  71. Mégnin P (1889). Entomologie appliquée à la médecine légale à propos de la thèse de M. Georges Yovanovitch [Entomology applied to forensic medicine in connection with the thesis of Mr. George Yovanovitch]. Bull Soc Med France 21:249–251Google Scholar
  72. Mégnin P (1892). Les Acariens Parasites [Parasitic acarina]. Edited by M. Léauté, Encyclopédie scientifique des Aide-Mémoire. Paris: G. Masson.Google Scholar
  73. Mégnin P (1894) La Faune des Cadavres. Application de l’Entomologie à la Médecine Légale [The fauna of corpses. Application of entomology to forensic medicine]. G. Masson and Gauthier-Villars et Fils, ParisGoogle Scholar
  74. Mertins JW, Hartdegen RW (2003) The ground skink, Scincella lateralis, an unusual host for phoretic deutonymphs of a uropodine mite, Fuscuropoda marginata, with a review of analogous mite-host interactions. Texas J Sci 55:33–42Google Scholar
  75. Moser JC, Cross EA (1975) Phoretomorph: A new phoretic phase unique to the Pyemotidae (Acarina: Tarsonemoidea). Ann Entomol Soc Am 68:820–822Google Scholar
  76. Moya Borja GE (1981) Effects of Macrocheles muscadomesticae (Scopoli) on the sexual behavior and longevity of Dermatobia hominis. Rev Bras Biol 41:237–241Google Scholar
  77. Niogret J, Lumaret J-P, Bertrand M (2006) Semiochemicals mediating host-finding behaviour in the phoretic association between Macrocheles saceri (Acari: Mesostigmata) and Scarabaeus species (Coleoptera: Scarabaeidae). Chemoecology 16:129–134CrossRefGoogle Scholar
  78. OConnor BM (1982) Evolutionary ecology of astigmatid mites. Ann Rev Entomol 27:385–409CrossRefGoogle Scholar
  79. Ozdemir MH, Aksoy U, Akisu C, Sonmez E, Cakmak MA (2003) Investigating demodex in forensic autopsy cases. Forensic Sci Int 135:226–231PubMedCrossRefGoogle Scholar
  80. Pérez SP, Duque P, Wolff M (2005) Successional behavior and occurrence matrix of carrion-associated arthropods in the urban area of Medellín, Colombia. J Forensic Sci 50:448–454PubMedCrossRefGoogle Scholar
  81. Perotti MA (1998) Interacciones entre ácaros (depredadores y foréticos) y dípteros muscoideos (presas y forontes) en hábitats rurales y suburbanos de la pendiente atlántica bonaerense [Predatory and phoretic interactions between mites and flies in the Argentinean pampas (ecology and physiology)]. Universidad Nacional de Mar del Plata, Mar del PlataGoogle Scholar
  82. Perotti MA, Braig HR (2009) Phoretic mites associated with animal and human decomposition. Exp Appl Acarol 49:85–124PubMedCrossRefGoogle Scholar
  83. Perotti MA, Brasesco MJA (1996) Especificidad forética de Macrocheles muscaedomesticae (Acari: Macrochelidae) [Phoretic specificity of Macrocheles muscaedomesticae (Acari: Macrochelidae)]. Ecol Austral 6:3–8Google Scholar
  84. Perotti MA, Brasesco MJA (1997) Orientación química de Macrocheles muscaedomesticae Scopoli (Acari: Macrochelidae) y percepción a distancia de posturas de Musca domestica (Diptera: Muscidae) y Calliphora vicina (Diptera: Calliphoridae) [Chemo-orientation of Macrocheles muscaedomesticae Scopoli (Acari: Macrochelidae) and detection of distant eggs of Musca domestica (Diptera: Muscidae) and Calliphora vicina (Diptera: Calliphoridae)]. Revista Soc Entomol Arg 56:67–70Google Scholar
  85. Petersson E, Sivinski J (2003) Mating status and choice of group size in the phoretic fly Norrbomia frigipennis (Spuler) (Diptera: Sphaeroceridae). J Insect Behav 16:411–423CrossRefGoogle Scholar
  86. Polak M (2003) Heritability of resistance against ectoparasitism in the Drosophila-Macrocheles system. J Evol Biol 16:74–82PubMedCrossRefGoogle Scholar
  87. Prat N, Anon-Suarez D, Rieradevall M (2004) First record of Podonominae larvae living phoretically on the shells of the water snail Chilina dombeyana (Diptera: Chironomidae/Gastropoda: Lymnaeidae). Aquat Insects 26:147–152CrossRefGoogle Scholar
  88. Prichard JG, Kossoris PD, Leibovitch RA, Robertson LD, Lovell FW (1986) Implications of trombiculid mite bites: reports of a case and submission of evidence in a murder trial. J Forensic Sci 31:301–306PubMedGoogle Scholar
  89. Pugh PJA, Llewellyn PJ, Robinson K, Shackley SE (1997) The associations of phoretic mites (Acarina: Chelicerata) with sand-hoppers (Amphipoda: Crustacea) on the South Wales coast. J Zool 243:305–318CrossRefGoogle Scholar
  90. Richards EN, Goff ML (1997) Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. J Med Entomol 34:328–339PubMedGoogle Scholar
  91. Robin C, Mégnin P (1877) Mémoire sur les Sarcoptides plumicoles [Notes about feather mites]. J Anat Physiol 13:402–406Google Scholar
  92. Rodrigueiro TSC, do Prado AP (2004) Macrocheles muscaedomesticae (Acari, Macrochelidae) and a species of Uroseius (Acari, Polyaspididae) phoretic on Musca domestica (Diptera, Muscidae): effects on dispersal and colonization of poultry manure. Iheringia Sér Zool 94:181–185CrossRefGoogle Scholar
  93. Rodriguez JG, Wade CF (1961) The nutrition of Macrocheles muscaedomesticae (Acarina: Macrochelidae) in relation to its predatory action on the house fly egg. Ann Entomol Soc Am 54:782–788Google Scholar
  94. Satou A, Nisimura T, Numata H (2000) Reproductive competition between the burying beetle Nicrophorus quadripunctatus without phoretic mites and the blow fly Chrysomya pinguis. Entomol Sci 3:265–268Google Scholar
  95. Saul-Gershenz LS, Millar JG (2006) Phoretic nest parasites use sexual deception to obtain transport to their host’s nest. Proc Natl Acad Sci USA 103:14039–14044PubMedCrossRefGoogle Scholar
  96. Sazima I, Grossman A (2006) Turtle riders: remoras on marine turtles in Southwest Atlantic. Neotrop Ichthyol 4:123–126Google Scholar
  97. Schwan TG (1993) Sex ratio and phoretic mites of fleas (Siphonaptera, Pulicidae and Hystrichopsyllidae) on the Nile grass rat (Arvicanthus niloticus) in Kenya. J Med Entomol 30:122–135PubMedGoogle Scholar
  98. Schwarz HH, Koulianos S (1998) When to leave the brood chamber? Routes of dispersal in mites associated with burying beetles. Exp Appl Acarol 22:621–631CrossRefGoogle Scholar
  99. Shalaby OA, deCarvalho LML, Goff ML (2000) Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with soil in a xerophytic habitat on the island of Oahu, Hawaii. J Forensic Sci 45:1267–1273PubMedGoogle Scholar
  100. Siepel H (1994) Life-history tactics of soil microarthropods. Biol Fert Soils 18:263–278CrossRefGoogle Scholar
  101. Siepel H (1995) Applications of microarthropods life-history tactics in nature management and ecotoxicology. Biol Fert Soils 19:75–83CrossRefGoogle Scholar
  102. Singh P, McEllistrem MT, Rodriguez JG (1967) The response of some macrochelids (Macrocheles muscaedomesticae (Scopoli), M. merdarius (Berl.) and M. subbadius (Berl.)) to temperature and humidity (Acarina: Macrochelidae). Acarologia 9:1–20Google Scholar
  103. Sivinski J, Marshall S, Petersson E (1999) Kleptoparasitism and phoresy in the Diptera. Fla Entomol 82:179–197CrossRefGoogle Scholar
  104. Southwood TRE (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev Cambridge Philos Soc 37:171–214CrossRefGoogle Scholar
  105. Sudhaus H (1981) Über die Sukzession von Nematoden in Kuhfladen [Succession of nematodes in cow droppings]. Pedobiologia 21:271–297Google Scholar
  106. Sudhaus H, Rehfeld K, Schulter D, Schweiger J (1988) Beziehungen zwischen Nematoden, Coleoptera und Dipteren in der Sukzession beim Abbau von Kuhfladen [Interrelationships of nematodes, beetles and flies in the succession of cow pats during decomposition]. Pedobiologia 31:305–322Google Scholar
  107. Tschapka M, Cunningham SA (2004). Flower mites of Calyptrogyne ghiesbreghtiana (Arecaceae): Evidence for dispersal using pollinating bats. Biotropica 36:377–381Google Scholar
  108. Vance GM, VanDyk JK, Rowley WA (1995) A device for sampling aquatic insects associated with carrion in water. J Forensic Sci 40:479–482Google Scholar
  109. Vaz-De-Mello FZ, Louzada JNC (1997) Considerações sobre forrageio arbóreo por Scarabaeidae (Coleoptera, Scarabaeoidea) e dados sobre sua ocorrência em floresta tropical do Brasil [Considerations on arboreal foraging by Scarabaeidae (Coleoptera, Scarabaeoidea), and data on their occurrence in tropical forests of Brazil]. Acta Zool Mex (n s) 72:55–61Google Scholar
  110. Wade CF, Rodriguez JG (1961) Life history of Macrocheles muscaedomesticae (Acarina, Mesostigmata), a predator of the house fly. Ann Entomol Soc Am 54:776–781Google Scholar
  111. Walter DE, Proctor HC (1999) Mites - ecology, evolution and behaviour. CABI, WallingfordGoogle Scholar
  112. Webb JP Jr, Loomis RB, Madon MB, Bennett SG, Greene GE (1983) The chigger species Eutrombicula belkini Gould (Acari: Trombiculidae) as a forensic tool in a homicide investigation in Ventura County, California. Bull Soc Vector Ecol 8:141–146Google Scholar
  113. Wilson DS (1983) The effect of population structure on the evolution of mutualism: a field test involving burying beetles and their phoretic mites. Am Nat 121:851–870CrossRefGoogle Scholar
  114. Yovanovitch GP (1888) Entomologie Appliquée à la Médicine Légale [Entomology applied to forensic medicine]. Ollier-Henry, ParisGoogle Scholar
  115. Zeh DW, Zeh JA (1992) On the function of harlequin beetle riding in the pseudoscorpion Cordylochernes scorpoides (Pseudoscorpionida: Chernetidae). J Arachnol 20:47–51Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Alejandra Perotti
    • 1
  • Henk R. Braig
    • 2
  • M. Lee Goff
    • 3
  1. 1.School of Biological SciencesUniversity of ReadingReadingUK
  2. 2.School of Biological SciencesBangor UniversityNorth WalesUK
  3. 3.Forensic Sciences ProgramChaminade UniversityHawaiiUSA

Personalised recommendations