Climate Change and Forensic Entomology

  • Margherita Turchetto
  • Stefano Vanin


We believe it is necessary to have a substantial section on climatology with the intent of providing a comprehensive picture that can be useful for the entomologist to explain the discovery of species or to observe communities that differ from those classically described. The most recent theories explaining the rise in global temperature, the consequences for flora and fauna, and the predictions concerning the climatic state in the forthcoming years should, in our view, become part of the knowledge of each forensic entomologist, who is often the first to pick up on and to indicate alien species or species that are changing their distributional areas, or phenology. Forensic entomologists, doctors, and veterinarians have more opportunities for chance encounters with species that are not included in the local checklists because the corpses and animal remains serve as substantial bait, attracting and concentrating in small areas rare species that previously had been scattered throughout the environment.

Many explanations of discoveries, along with the apparent incoherence in the series of surges proposed in the classic table of the colonization of corpses, can be justified in the light of environmental variations induced by actual climatic changes, which are occurring with incredible velocity.


Global Warming North Atlantic Region Forensic Entomology Vertical Land Movement Forensic Entomologist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Archer MS (2003) Annual variation in arrival and departure times of carrion insects from carcasses: implications for successive studies in forensic entomology. Aust J Zool 51:569–576CrossRefGoogle Scholar
  2. Archer MS, Elgar MA (2003) Yearly activity patterns in southern Victoria (Australia) of seasonally active carrion insects. Forensic Sci Int 132:173–176CrossRefPubMedGoogle Scholar
  3. Arnaldos I, Romera E, Garcia MD, Luna I (2001) An initial study on the succession of sarcosaprophagous Diptera (Insecta) on carrion in the southeastern Iberian peninsula. Int Legal Med 114:156–162CrossRefGoogle Scholar
  4. Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos Trans R Soc B Biol Sci 357:849–862CrossRefGoogle Scholar
  5. Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci USA 98:14509–14511CrossRefPubMedGoogle Scholar
  6. Brownstein JS, Holford TR, Fish D (2005) Effect of climate change on Lyme disease risk in North America. Ecohealth 2:38–46CrossRefPubMedGoogle Scholar
  7. Campobasso CP, Disney RHL, Introna F (2004) A case of Megaselia scalaris (Loew) (Dipt., Phoridae) breeding in a human corpse. Aggrawals Internet J Forensic Med Toxicol 5:3–5Google Scholar
  8. IPCC (Intergovernmental Panel on Climate Change) (2001) IPCC: Third Assessment Report.
  9. IPCC (Intergovernmental Panel on Climate Change) (2007) IPCC: Fourth Assessment Report.
  10. Dewaele P, Leclercq M (2002) Les Phorides (Dipteres) sur cadavres humains en Europe occidentale. In: Proceedings of the first European forensic entomology seminar. Rosny Sous Bois, EAFEGoogle Scholar
  11. Disney RHL (1994) Scuttle Flies: The Phoridae. Chapman & Hall, New YorkGoogle Scholar
  12. Dyurgerov MB, Meier MF (2000) Twentieth century climate change: evidence from small glaciers. Proc Natl Acad Sci USA 97(4):1406–1411CrossRefPubMedGoogle Scholar
  13. Erzinclioglu Z (2000) Maggots, murder and men: memories and reflections of a forensic entomologist. Harley Books, Colchester, UKGoogle Scholar
  14. Frank JH, McCoy ED (1994) Introduction to insect behavioral ecology: the good, the bad, and the beautiful; non-indigenous species in Florida-invasive adventive insects and other organisms in Florida. Fla Entomol 78:1–15Google Scholar
  15. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72CrossRefPubMedGoogle Scholar
  16. Gagosian RB (2003) Abrupt climate change: should we be worried? World Economic Forum, SwitzerlandGoogle Scholar
  17. Gobbi P, Toniolo M, Martínez-Sánchez A, Rojo S (2008) Life cycle of Chrysomya megacephala and Protophormia terranovae in SW Europe: introduced species and forensic entomology (Diptera: Calliphoridae). In: Proceedings of the sixth meeting of the European association for forensic entomology. Kolymbari, EAFEGoogle Scholar
  18. Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central European urban habitat. J Med Entomol 41(3):511–523CrossRefPubMedGoogle Scholar
  19. Grassberger M, Friedrich E, Reiter C (2003) The blowfly Chrysomya albiceps (Wiedmann) (Diptera: Calliphoridae) as a new forensic indicator in central Europe. Int J Legal Med 117:75–81PubMedGoogle Scholar
  20. Hall MJR, Smith KGV (1993) Diptera causing myiasis in man. In Lane RP, Crosskey RW Medical Insects and Arachnids, Chapman & Hall, London, p. 429–469Google Scholar
  21. Hansen J, Lebedeff S (1987) Global trends of measured surface air temperature. J Geophys Res 92:13345–13372CrossRefGoogle Scholar
  22. Hansen J, Ruedy R, Sato M, Reynolds R (1996) Global surface air temperature in 1995: return to pre-Pinatubo level. Geophys Res Lett 23:1665–1668CrossRefGoogle Scholar
  23. Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14:146–150CrossRefPubMedGoogle Scholar
  24. Hill JK, Thomas CD, Blakeley DS (1999a) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121:165–170CrossRefGoogle Scholar
  25. Hill JK, Thomas CD, Lewis O (1999b) Flight morphology in fragmented populations of rare British butterfly: Hesperia comma. Biol Coserv 87:277–284CrossRefGoogle Scholar
  26. Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Philos Trans R Soc B Biol Sci 269:2163–2171Google Scholar
  27. Hughes C, Hill JK, Dytham C (2003) Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Philos Trans R Soc B Biol Sci 270(suppl 2):S147–S150Google Scholar
  28. Introna F, Campobasso CP, Di-Fazio A (1998) Three case studies in forensic entomology from southern Italy. J Forensic Sci 43:210–214PubMedGoogle Scholar
  29. IPCC (Intergovernmental Panel on Climate Change) (1996a) Climate change 1995: the science of climate change. Cambridge University Press, New YorkGoogle Scholar
  30. IPCC (Intergovernmental Panel on Climate Change) (1996b) Impacts, adaptation, and migration of climate change: scientific-technical analyses. Cambridge University Press, New YorkGoogle Scholar
  31. Kamata N, Esaki K, Kato K, Igeta Y, Wada K (2002) Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) in Japan. Bull Entomol Res 92:119–126PubMedGoogle Scholar
  32. Karl TR, Williams CN Jr (1987) An approach to adjusting climatological time series for discontinuous inhomogeneities. J Appl Meteorol 26:1744–1763CrossRefGoogle Scholar
  33. Lindgren E, Gustafson R (2001) Tick-borne encephalitis in Sweden and climate change. Lancet 358:16–18CrossRefPubMedGoogle Scholar
  34. Maistrello L, Lombroso L, Pedroni E, Reggiani A, Vanin S (2006) Summer raids of Arocatus melanocephalus (Heteroptera, Lygaeidae) in urban buildings in northern Italy: is climate change to blame? J Thermal Biol 31:594–598CrossRefGoogle Scholar
  35. Martínez-Sánchez A, Gobbi P, Velasquez Y, Rojo S (2007a) Biology of Crysomya megacephala (Fabricius, 1794) in Europe, new data and implications for forensic entomology research (Dipter: Calliphoridae). In: Proceedings of the fifth meeting of the European association for forensic entomology. Brussels, EAFEGoogle Scholar
  36. Martínez-Sánchez A, Magaña C, Rojo S (2007b) First data about forensic importance of Protophormia terranovae (Robineau-Desvoidy, 1830) in Spain (Diptera: Calliphoridae). In: Proceedings of the fifth meeting of the European association for forensic entomology. Brussels, EAFEGoogle Scholar
  37. Martìnez-Sánchez A, Rojo S, Marcos-Garcia MA (2000) Annual and spatial activity of dung flies and carrion in a Mediterranean holm-oak pasture ecosystem. Med Vet Entomol 14:56–63CrossRefPubMedGoogle Scholar
  38. McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci USA 99:6070–6074CrossRefPubMedGoogle Scholar
  39. Megnin P (1894) La Faune des Cadavres: Applications de l’Entomologie à la Médecine Légale. Encyclopedie Scientifique des Aides-Memoires. Masson & Gauthier-Villars, ParisGoogle Scholar
  40. Musolin DL, Numata H (2003) Timing of diapause induction and its life-history consequences in Nezara viridula: is it costly to expand the distribution range? Ecol Entomol 28:694–703CrossRefGoogle Scholar
  41. Musolin DL, Numata H (2004) Late-season induction of diapause in Nezara viridula and its effect on adult coloration and post-diapause reproductive performance. Entomol Exp Appl 111:1–6CrossRefGoogle Scholar
  42. Nicolussi K, Patzelt G (2006) Klimawandel und Veränderungen an der alpinen Waldgrenze-aktuelle Entwicklungen im Vergleich zur Nacheiszeit. Wien: BFW-Praxisinformation 10:3–5Google Scholar
  43. Nimela J, Spence JR (1991) Distribution and abundance of an exotic ground-beetle (Carabidae): a test of community impact. Oikos 62:351–359CrossRefGoogle Scholar
  44. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  45. Rognes K (1997) Additions to the Swiss fauna of blowflies with an analysis of the systematic position of Calliphora stylifera (Pokorny, 1889) including a description of the female (Diptera, Calliphoridae). Mitteilschweiz Entomol Ges 70:63–76Google Scholar
  46. Roy DB, Asher J (2003) Spatial trends in the sighting dates of British butterflies. Int J Biometeorol 47:188–192CrossRefPubMedGoogle Scholar
  47. Smith KGV (1986) A manual of forensic entomology. Trustees of the British Museum, LondonGoogle Scholar
  48. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296CrossRefPubMedGoogle Scholar
  49. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213CrossRefGoogle Scholar
  50. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musch M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581CrossRefPubMedGoogle Scholar
  51. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  52. Turchetto M (2000) Implicazioni entomologico-forensi dell’introduzione in Italia della mosca neotropicale Hermetia illucens L. (Diptera: Stratiomyidae). Riv Ital Med Leg 22(6):1279–1290Google Scholar
  53. Turchetto M, Vanin S (2004a) Forensic entomology and climatic change. Int Forensic Sci 46(suppl):207–209CrossRefGoogle Scholar
  54. Turchetto M, Vanin S (2004b) Forensic entomology and globalisation. Parasitologia 46(1-2):187–190Google Scholar
  55. Turchetto M, Vanin S (2004c) Forensic evaluations of a crime case with monospecific necrophagous fly population infected by two parasitoid species. Aggrawals Internet J Forensic Med Toxicol 5(1):12–18Google Scholar
  56. Turchetto M, Lafisca S, Costantini G (2001) Postmortem interval (PMI) determined by study sarcophagous biocenoses: three cases from the province of Venice (Italy). Forensic Sci Int 120:28–31CrossRefPubMedGoogle Scholar
  57. Turchetto M, Villemant C, Vanin S (2003) Two fly parasitoids collected during an entomo-forensic investigation: the widespread Nasonia vitripennis (Hymenoptera Pteromalidae) and the newly recorded Tachinaephagus zealandicus (Hymenoptera Encyrtidae). Boll Soc Entomol Ital 135(1):109–115Google Scholar
  58. US National Academy of Sciences (2002) Abrupt climate change: inevitable surprises. National Academy of Sciences, National Research Council Committee on Abrupt Climate Change, National Academy Press, Washington, DCGoogle Scholar
  59. Vanin S, Caenazzo L, Arseni A, Cecchetto G, Cattaneo C, Turchetto M (2009) Records of Chrysomya albiceps in Northern Italy: an ecological and forensic perspective. Mem Inst Osw Cruz 104(4):555–557Google Scholar
  60. Vanin S, Uliana M, Bonato L, Maistrello L (2005) Nuove segnalazioni di Leptoglossus occidentalis (Heteroptera, Coreidae) nell’Italia nord-orientale. Lav Soc Ven Sc Nat 30:149Google Scholar
  61. Vanin S, La Fisca A, Turchetto M (2007) Determination of the time of death of a brown bear Ursus arctos arctos L., by means of insects. Entomologia Mexicana 6(2):874–879Google Scholar
  62. Velásquez Y, Martínez-Sánchez A, Rojo S (2008) Autumn colonization of pig carrion by blowflies (Diptera: Calliphoridae), in a mediterranean urban area (SE, Spain). In: Proceedings of the sixth meeting of the European association for forensic entomology. Kolymbari, EAFEGoogle Scholar
  63. Venturi F (1956) Notulae Dipterologiche X. Specie nuove per l’Italia. Boll Soc Entomol Ital 3–4:56Google Scholar
  64. Visser ME, Holleman LJ (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Philos Trans R Soc B Biol Sci 268:289–294Google Scholar
  65. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  66. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69CrossRefPubMedGoogle Scholar
  67. Work T, McCullough DG, Cavey JF, Komsa R (2005) Arrival rate of nonindigenous insect species into the United States through foreign trade. Biol Invas 7:323–332CrossRefGoogle Scholar
  68. Wuethrich B (2000) Ecology. How climate change alters rhythms of the wild. Science 287:793–795CrossRefPubMedGoogle Scholar
  69. Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230CrossRefPubMedGoogle Scholar
  70. UNEP (United Nations Environment Programme)

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Margherita Turchetto
    • 1
  • Stefano Vanin
    • 1
  1. 1.Department of BiologyUniversity of PadovaPadovaItaly

Personalised recommendations