Skip to main content

Cuticular Hydrocarbons: A New Tool in Forensic Entomology?

  • Chapter
  • First Online:
Current Concepts in Forensic Entomology

Abstract

The cuticle of all insects is covered with a very thin epicuticular layer of wax. This layer consists of free lipids, a class of compounds that includes hydrocarbons, alcohols, fatty acids, waxes, acylglycerides, phospholipids and glycolipids (Gibbs and Crockett 1998), although the presence of the last three groups may reflect aggressive extraction techniques which remove both internal as well as external lipids. This waxy layer prevents desiccation and penetration of micro-organisms (Gullan and Cranston 1994) as well as encoding various chemical signals. In the majority of the insects, and nearly all social insects so far studied, the free lipids are dominated by hydrocarbons (Lockey 1988). Cuticular hydrocarbons are found in all life stages of insects and are biologically very stable. Their biosynthesis is genetically based and modulated by factors such as reproductive status (Monnin 2006), developmental stage (Martin et al. 2001), diet (Buczkowski et al. 2005) or temperature (Toolson 1982; Savarit and Ferveur 2002; Rouault et al. 2004). The link found between diet and hydrocarbon production in social insects by Liang and Silverman (2000, 2001) is disputable, since behavioural changes occur in <2 min suggesting direct hydrocarbon transfer via contact with the prey rather than via diet, which explains why the host acquires the entire cuticular hydrocarbon profile of the prey (Liang and Silverman 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akino T (2006) Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): description of new very long chained hydrocarbon components. Appl Entomol Zool 41:667–677

    CAS  Google Scholar 

  • Akino T, Yamamura K, Wakamura S et al (2004) Direct behavioural evidence for hydrocarbons as nest mate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl Entomol Zool 39:381–387

    CAS  Google Scholar 

  • Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65

    CAS  PubMed  Google Scholar 

  • Antony C, Jallon J-M (1982) The chemical basis for sex recognition in Drosophila melanogaster. J Ins Physiol 28:873–880

    CAS  Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid-Phase Microextraction with thermal-desorption using fused-silica optical fibers. Anal Chem 62:2145–2148

    CAS  Google Scholar 

  • Bartelt RJ, Jones RL, Kulman HM (1982) Evidence for a multicomponent sex-pheromone in the yellowheaded spruce sawfly. J Chem Ecol 8:83–94

    Google Scholar 

  • Blomquist GJ, Dillwith JW (1985) Cuticular lipids. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology Biochemistry and Pharmacology, 1st edn. Pergamon, Oxford, pp 117–154

    Google Scholar 

  • Blomquist GJ, Toolson EC, Nelson DR (1985) Epicuticular hydrocarbons of Drosophila pseudoobscura (Diptera: Drosophilidae): identification of unusual alkadiene and alkatriene positional isomers. Insect Biochem 15:25–34

    CAS  Google Scholar 

  • BorgKarlson AK, Mozuraitis R (1996) Solid phase micro extraction technique used for collecting semiochemicals. Identification of volatiles released by individual signalling Phyllonorycter sylvella moths. Zeitschrift Fur Naturforschung C-a Journal of Biosciences 51:599–602

    CAS  Google Scholar 

  • Buczkowski G, Kumar R, Suib SL, Silverman J (2005) Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant Linepithema humile diminishes intercolony aggression. J Chem Ecol 31:829–843

    CAS  PubMed  Google Scholar 

  • Carlson DA, Roan C-S, Yost RA, Hector J (1989) Dimethyl disulfide derivatives of long chain alkenes alkadienes and alkatrienes for gas chromatography/mass spectrometry. Anal Chem 61:1564–1571

    CAS  Google Scholar 

  • Châline N, Sandoz J-C, Martin SJ, Ratnieks FLW, Jones GR (2005) Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera). Chem Senses 30:327–335

    PubMed  Google Scholar 

  • Christensen LB, Larsen TH (1993) Method for determining the age of diesel oil spills in the soil. Ground Water Monit Remediation 13:142–149

    CAS  Google Scholar 

  • Christensen JH, Tomasi G (2007) Practical aspects of chemometrics for oil spill fingerprinting. J Chromatogr A 1169:1–22

    CAS  PubMed  Google Scholar 

  • Conner WE, Eisner T, Vander Meer RK, Guerrero A, Chiringelli D, Meinwald J (1980) Sex attractant of an arctiid moth (Utethesia ornatrix): a pulsed chemical signal. Behav Ecol Sociobiol 7:55–63

    Google Scholar 

  • Cremer S, Ugelvig LV, Drijfhout FP, Schlick-Steiner BC, Steiner FM et al (2008) The evolution of invasiveness in garden ants. PLoS ONE 3(12):e3838. doi:101371/journal.pone.0003838

    PubMed  Google Scholar 

  • Crespo R, Juarez MP, Cafferata LFR (2000) Biochemical interaction between entomopathogenous fungi and their insect-host-like hydrocarbons. Mycologia 92:528–536

    CAS  Google Scholar 

  • Cvačka J, Jiroš P, Šobotník J, Hanus R, Svatoš A (2006) Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J Chem Ecol 32:409–434

    PubMed  Google Scholar 

  • Dani FR (2006) Cuticular lipids as semiochemicals in paper wasps and other social insects. Ann Zool Fennici 43:500–514

    Google Scholar 

  • Dani FR, Jones GR, Destri S, Spencer SH, Turillazzi S (2001) Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim Behav 62:165–171

    Google Scholar 

  • Dani FR, Jones GR, Morgan ED, Turillazzi S (2003) Re-evaluation of the chemical secretion of the sternal glands of Polistes social wasps (Hymenoptera Vespidae). Ethol Ecol Evol 15:73–82

    Google Scholar 

  • Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489

    CAS  PubMed  Google Scholar 

  • De Hoffmann E, Stroobant V (2001) Mass spectrometry - principles and applications, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Desena ML, Clark JM, Edman JD, Symington SB, Scott TW, Clark GG, Peters TM (1999a) Potential for aging female Aedes aegypti (Diptera: Culicidae) by gas chromatographic analysis of cuticular hydrocarbons including a field evaluation. J Med Entomol 36:811–823

    CAS  PubMed  Google Scholar 

  • Desena ML, Edman JD, Clark JM, Symington SB, Scott TW (1999b) Aedes aegypti (Diptera: Culicidae) age determination by cuticular hydrocarbon analysis of female legs. J Med Entomol 36:824–830

    CAS  PubMed  Google Scholar 

  • Edney EB (1977) Water balance in land arthropods. Springer, New York

    Google Scholar 

  • Endler A, Liebig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950

    CAS  PubMed  Google Scholar 

  • Ferveur J-F (2005) Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295

    PubMed  Google Scholar 

  • Ferveur J-F, Savarit F, O’Kane CJ, Sureau G, Greenspan RJ, Jallon J-M (1997) Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276:1555–1558

    CAS  PubMed  Google Scholar 

  • Francke W, Plass E, Zimmermann N, Tietgen H, Tolasch T, Franke S, Subchev M, Toshova T, Pickett JA, Wadhams LJ, Woodcock CM (2000) Major sex pheromone component of female herald moth Scoliopteryx libatrix is the novel branched alkene (6Z 13)-Methylheneicosene. J Chem Ecol 26:1135–1149

    CAS  Google Scholar 

  • Fujiwara-Tsujii N, Yamagata N, Takeda T, Mizunami M, Yamaoka R (2006) Behavioral responses to the alarm pheromone of the ant Camponotus obscuripes (Hymenoptera: Formicidae). Zool Sci (Tokyo) 23:353–358

    CAS  Google Scholar 

  • Gibbs AG (1995) Physical properties of insect cuticular hydrocarbons: model mixtures and interactions. Comp Biochem Physiol B 112:667–672

    Google Scholar 

  • Gibbs AG (1998) The role of lipid physical properties in lipid barriers. Am Zool 38:268–279

    CAS  Google Scholar 

  • Gibbs AG, Crockett EL (1998) The biology of lipids: integrative and comparative perspectives. Am Zool 38:265–267

    CAS  Google Scholar 

  • Gibbs AG, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: the effects of chain length methyl-branching and unsaturation. Comp Biochem Physiol 112B:243–249

    CAS  Google Scholar 

  • Gilby AR, McKellar JW (1970) Composition of empty puparia of a blowfly. J Insect Physiol 16: 1517–1529

    Google Scholar 

  • Gobin B, Ito F, Billen J (2003) The subepithelial gland in ants: a novel exocrine gland closely associated with the cuticle. Acta Zoologica (Stockholm) 84:285–291

    Google Scholar 

  • Greene MJ, Gordon DM (2003) Social insects - cuticular hydrocarbons inform task decisions. Nature 423:32–32

    CAS  PubMed  Google Scholar 

  • Gullan PJ, Cranston PS (1994) The insects: an outline of entomology. Chapman and Hall, London

    Google Scholar 

  • Heath RR, Dueben D (1998) Analytical and preparative gas chromatography. In: Millar JG, Haynes KF (eds) Methods in chemical ecology. Kluwer, Dordrecht, pp 85–126

    Google Scholar 

  • Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172

    CAS  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological behavioural and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    CAS  PubMed  Google Scholar 

  • Kaib M, Franke S, Francke W, Brandl R (2002) Cuticular hydrocarbons in a termite: phenotypes and a neighbour - stranger effect. Physiol Entomol 27:189–198

    CAS  Google Scholar 

  • Kimura T, Carlson AD, Mori K (2001) Synthesis of all the stereoisomers of 13, 17-dimethyl-1-tritriacontene and 13, 17-dimethyl-1-pentatriacontene the contact sex pheromone components of the female tsetse fly Glossina austeni. Eur J Org Chem 17:3385–3390

    Google Scholar 

  • Krokos FD, Konstantopoulou MA, Mazomenos BE (2001) Alkadienes and alkenes mediating mating behaviour of the almond seed wasp Eurytoma amygdali. J Chem Ecol 27:2169–2181

    CAS  PubMed  Google Scholar 

  • Lecuona R, Riba G, Cassier P, Clement JL (1991) Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J Invertebr Pathol 58:10–18

    CAS  Google Scholar 

  • Liang D, Silverman J (2000) ‘You are what you eat’: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant Linepithema humile. Naturwissenschaften 87:412–416

    CAS  PubMed  Google Scholar 

  • Liang D, Silverman J (2001) Colony disassociation following diet partitioning in a unicolonial ant. Naturwissenschaften 88:73–77

    PubMed  Google Scholar 

  • Lockey KH (1988) Lipids of the insect cuticle: origin composition and function. Comp Biochem Physiol 89B:595–645

    CAS  Google Scholar 

  • Lommelen E, Johnson CA, Drijfhout FP, Billen J, Wenseleers T, Gobin B (2006) Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J Chem Ecol 32:2023–2034

    CAS  PubMed  Google Scholar 

  • Malmquist LMV, Olsen RR, Hansen AB, Andersen O, Christensen JH (2007) Assessment of oil weathering by as chromatography-mass spectrometry time warping and principal component analysis. J Chromatogr A 1164:262–270

    CAS  PubMed  Google Scholar 

  • Marcillac F, Bousquet F, Alabouvette J, Savarit F, Ferveur JF (2005) A mutation with major effects on Drosophila melanogaster sex pheromones. Genetics 171:1617–1628

    CAS  PubMed  Google Scholar 

  • Markow TA, Toolson EC (1990) Temperature effects on epicuticular hydrocarbons and sexual isolation in Drosophila mojavensis. In: Barker JSF, Starmer WT, MacIntyre RJ (eds) Ecological and evolutionary genetics of Drosophila. Plenum, New York, pp 315–331

    Google Scholar 

  • Martin C, Salvy M, Provost E, Bagnères A-G, Roux M, Crauser D, Clement J-L, Le Conte Y (2001) Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honey-bee Apis mellifera. Ins Biochem Mol Biol 31:365–379

    CAS  Google Scholar 

  • Martin SJ, Jenner EA, Drijfhout FP (2007) Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc Roy Soc B Biol Sci 274:2717–2722

    CAS  Google Scholar 

  • Martin SJ, Helantera H, Drijfhout FP (2008a) Colony-specific hydrocarbons identify nest mates in two species of Formica ant. J Chem Ecol 34:1072–1080

    CAS  PubMed  Google Scholar 

  • Martin SJ, Helantera H, Drijfhout FP (2008b) Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol J Linnean Soc 95:131–140

    Google Scholar 

  • Martin SJ, Vitikainen E, Helantera H, Drijfhout FP (2008c) Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc Roy Soc B Biol Sci 275:1271–1278

    CAS  Google Scholar 

  • Martin SJ, Drijfhout FP (2009) Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. J Chem Ecol 35:368–374

    CAS  PubMed  Google Scholar 

  • Martin SJ, Drijfhout FP (2009) A review of ant cuticular hydrocarbons. J Chem Ecol in press

    Google Scholar 

  • Mazomenos BE, Athanassiou CG, Kavallieratos N, Milonas P (2004) Evaluation of the major female Eurytoma amygdali sex pheromone Components (Z, Z)-6, 9-tricosadiene and (Z, Z)-6, 9-pentacosadiene for male attraction in field tests. J Chem Ecol 30:1245–1255

    CAS  PubMed  Google Scholar 

  • McLafferty FW, Turceck F (1993) Interpretation of mass spectra, 4th edn. University Science Books, Mill Valley, CA

    Google Scholar 

  • Medeiros PM, Simoneit BRT (2007) Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological environmental and forensic research. J Sep Sci 30:1516–1536

    CAS  PubMed  Google Scholar 

  • Millar JG (1998) Liquid chromatography. In: Millar JG, Haynes KF (eds) Methods in chemical ecology. Kluwer, Dordrecht, pp 85–126

    Google Scholar 

  • Millar JG, Sims JJ (1998) Preparation cleanup and preliminary fractionation of extracts. In: Millar JG, Haynes KF (eds) Methods in chemical ecology. Kluwer, Dordrecht, pp 85–126

    Google Scholar 

  • Monnin T (2006) Chemical recognition of reproductive status in social insects. Annales Zoologici Fennici 43:515–530

    Google Scholar 

  • Monnin T, Ratnieks FLW, Jones GR, Beard R (2002) Pretender punishment induced by chemical signalling in a queenless ant. Nature 419:61–65

    CAS  PubMed  Google Scholar 

  • Morgan ED (2004) Biosynthesis in insects. The Royal Society of Chemistry Cambridge, UK

    Google Scholar 

  • Morrison R (1999) Environmental forensics: principles and applications. CRC, Boca Raton

    Google Scholar 

  • Morrison RD (2000) Application of forensic techniques for age dating and source identification in environmental litigation. Environ Forensics 1:131–153

    CAS  Google Scholar 

  • Napolitano R, Juarez MP (1997) Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch Biochem Biophys 344:208–214

    CAS  PubMed  Google Scholar 

  • Nelson DR (1993) Methyl-branched lipids in insects. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry biochemistry and biology. Nebraska University Press, Lincoln, NE, pp 270–315

    Google Scholar 

  • Nelson DR, Lee RE (2004) Cuticular lipids and desiccation resistance in overwintering larvae of the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae). Comp Biochem Physiol 138B:313–320

    CAS  Google Scholar 

  • Page M, Nelson LJ, Blomquist GJ, Seybold SJ (1997) Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J Chem Ecol 23:1053–1099

    CAS  Google Scholar 

  • Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, New York

    Google Scholar 

  • Pedrini N, Crespo R, Juarez MP (2007) Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol 146C:124–137

    CAS  Google Scholar 

  • Pickett JA, Williams IH, Martin AP (1982) Z)-11-eicosen-1-ol an important new pheromonal component from the sting of the honey bee Apis mellifera L. (Hymenoptera:Apidae. J Chem Ecol 8:163–175

    CAS  Google Scholar 

  • Rochat D, Ramirez-Lucas P, Malosse C, Aldana R, Kakul T, Morin JP (2000) Role of solid-phase microextraction in the identification of highly volatile pheromones of two Rhinoceros beetles Scapanes australis and Strategus aloeus (Coleoptera Scarabaeidae Dynastinae). J Chromatogr A 885:433–444

    CAS  PubMed  Google Scholar 

  • Rouault J, Capy P, Jallon JM (2001) Variations of male cuticular hydrocarbons with geoclimatic variables: an adaptative mechanism in Drosophila melanogaster? Genetica 110:117–130

    Google Scholar 

  • Rouault J-D, Marican C, Wicker-Thomas C, Jallon J-M (2004) Relations between cuticular hydrocarbons (HC) polymorphism resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. stimulans. Genetica 120:195–212

    PubMed  Google Scholar 

  • Roux O, Gers C, Legal L (2008) Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol 22:309–317

    CAS  PubMed  Google Scholar 

  • Sachse S, Rappert A, Galizia CG (1999) The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci 11:3970–3982

    CAS  PubMed  Google Scholar 

  • Sauer TC, Michel J, Hayes MO, Aurand DV (1998) Hydrocarbon characterization and weathering of oiled intertidal sediments along the Saudi Arabian Coast two years after the Gulf War oil spill. Environ Int 24:43–60

    CAS  Google Scholar 

  • Savarit F, Ferveur J-F (2002) Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J Exp Biol 205:3241–3249

    CAS  PubMed  Google Scholar 

  • Savarit F, Sureau G, Cobb M, Ferveur J-F (1999) Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proc Natl Acad Sci USA 96:9015–9020

    CAS  PubMed  Google Scholar 

  • Schal C, Sevala VL, Young HP, Bachmann JAS (1998) Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. Am Zool 38:382–393

    CAS  Google Scholar 

  • Schmidt GW, Beckmann DD, Torkelson BE (2002) A technique for estimating the age of regular/mid-grade gasolines released to the subsurface since the early 1970’s. Environ Forensics 3:145–162

    CAS  Google Scholar 

  • Scott D (1986) Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc Natl Acad Sci USA 83:8429–8433

    CAS  PubMed  Google Scholar 

  • Sonnet PE, Uebel EC, Lusby WR, Schwarz M, Miller RW (1979) Sex pheromone of the stable fly. Identification, synthesis, and evaluation of alkenes from female stable flies. J Chem Ecol 5:353–361

    CAS  Google Scholar 

  • Soroker V, Hefetz A (2000) Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. J Insect Physiol 46:1097–1102

    CAS  PubMed  Google Scholar 

  • Thompson MJ, Glancey BM, Robbins WE, Lofgren CS, Dutky SR, Kochansky J, Vandermeer RK, Glover AR (1981) Major hydrocarbons of the post-pharyngeal gland of mated queens of the red imported fire ant Solenopsis invicta. Lipids 16:485–495

    CAS  Google Scholar 

  • Toolson EC (1982) Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura. J Exp Zool 222:249–253

    CAS  Google Scholar 

  • Toolson EC, Kuper-Simbron R (1989) Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal-acclimation ability. Evolution 43:468–473

    Google Scholar 

  • Toolson EC, Markow TA, Jackson LL, Howard RW (1990) Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Ann Entomol Soc Am 83:1165–1176

    CAS  Google Scholar 

  • Trabalon M, Campan M, Hartmann N, Baehr J-C, Porcheron P, Clément J-L (1994) Effects of allatectomy and ovariectomy on cuticular hydrocarbons in Calliphora vomitoria (Diptera). Arch Insect Biochem Physiol 25:375–391

    Google Scholar 

  • Ugelvig LV, Drijfhout FP, Kronauer DJC, Boomsma JJ, Pedersen JS, Cremer S (2008) The introduction history of invasive garden ants in Europe: integrating genetic chemical and behavioural approaches. BMC Biology 6:11

    PubMed  Google Scholar 

  • Urech R, Brown GW, Moore CJ, Green PE (2005) Cuticular hydrocarbons of buffalo fly Haematobia exigua and chemotaxonomic differentiation from horn fly H-Irritans. J Chem Ecol 31:2451–2461

    CAS  PubMed  Google Scholar 

  • Vercammen J, Sandra P, Baltussen E, Sandra T, David F (2000) Considerations on static and dynamic sorptive and adsorptive sampling to monitor volatiles emitted by living plants. Hrc-J High Res Chromatogr 23:547–553

    CAS  Google Scholar 

  • Watson JT (1997) Introduction to mass spectrometry, 3rd edn. Lippincott-Raven, New York

    Google Scholar 

  • Wicker C, Jallon J-M (1995) Influence of ovary and ecdysteroids on pheromone biosynthesis in Drosophila melanogaster (Diptera: Drosophilidae). Eur J Entomol 92:197–202

    CAS  Google Scholar 

  • Xu SP, Sun YG (2005) An improved method for the micro-separation of straight chain and branched/cyclic alkanes: Urea inclusion paper layer chromatography. Org Geochem 36:1334–1338

    CAS  Google Scholar 

  • Ye GY, Li K, Zhu JY, Zhu GH, Hu C (2007) Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. J Med Entomol 44:450–456

    CAS  PubMed  Google Scholar 

  • Zhu GH, Ye GY, Hu C, Xu XH, Li K (2006) Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Med Vet Entomol 20:438–444

    CAS  PubMed  Google Scholar 

  • Zhu GH, Xu XH, Yu XJ, Zhang Y, Wang JR (2007) Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Sci Int 169:1–5

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr S. Martin and Prof. E.D. Morgan for their help during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Drijfhout, F.P. (2009). Cuticular Hydrocarbons: A New Tool in Forensic Entomology?. In: Amendt, J., Goff, M., Campobasso, C., Grassberger, M. (eds) Current Concepts in Forensic Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9684-6_10

Download citation

Publish with us

Policies and ethics