The Application of Cell Based Biosensor and Biochip for EnvironmentalMonitoring

  • Junhong Min
  • Cheol-Heon Yea
  • Waleed Ahmed El-Said
  • Jeong-Woo Choi

Abstract

The cell based biosensor has outstanding advantages in aspect of environmental monitoring, comparing with DNA or protein based biosensor. Various cell based biosensors to detect toxic chemicals have been researched in few decades and applied directly to environmental fields. In this study, some key technologies such as cell immobilization technology, on-chip cell cultivation technology, and cell viability detection technology required to develop cell based biosensors are categorized and briefly discussed. We suggests that cell based biochip can be applied to environmental monitoring by demonstrating that phenol can be successfully measured by two distinct cell based label-free biochips, SPR based cell chip and electric based cell chip, developed using key technologies.

Keywords

Cell chip Electrochemical detection SPR HepG2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler H et al. (1991) Arg-Gly Asp constrained within cyclic pentapeptides, strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291:50–54CrossRefGoogle Scholar
  2. Bae YM, Park KW, Oh BK, Lee WH, Choi JW et al. (2006) Immunosensor for detection of Salmonella typhimurium based on imaging ellipsometry. Colloid Surf A 257–258: 19–23Google Scholar
  3. Balaban NQ, Schwarz US, Rivelin D, Goichberg P, Tzur G, Sabanay L, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B et al. (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol 3:466–472CrossRefGoogle Scholar
  4. Banach K, Halbach MD, Hu P, Hescheler J, Egert U et al. (2003) Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol – Heart Circ Physiol 284:H2114–2123Google Scholar
  5. Bhatia SN, Balis UJ, Yarmush ML, Toner M et al. (1999) Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13:1883–1900Google Scholar
  6. Biran I, Walt DR (2002) Optical imaging fiber-based single live cell arrays: a high-density cell assay platform. Anal Chem 74:3046–3054CrossRefGoogle Scholar
  7. Blau HM, Baltimore D (1991) Differentiation requires continuous regulation. J Cell Biol 112:781–783CrossRefGoogle Scholar
  8. Borkholder DA, Bao J, Maluf NI, Perl ER, Kovas GTA et al. (1997) Microelectrode arrays for stimulation of neural slice preparations. J Neurosci Methods 77:61–66CrossRefGoogle Scholar
  9. Bousse L (1996) Whole cell biosensors. Sens Actu B 34: 270–275CrossRefGoogle Scholar
  10. Boxus T, Touillaux R, Dive G, Marchand-Brynaert J et al. (1998) Synthesis and evaluation of RGD peptidomimetics aimed at surface bioderivatization of polymer substrates. Bioorg Med Chem 6:1577–1595CrossRefGoogle Scholar
  11. Britland S, Clark P, Connolly P, Moores G et al. (1992) Micropatterned substratum adhesiveness – a model for morphogenetic cues controlling cell behavior. Exp Cell Res 198:124–129CrossRefGoogle Scholar
  12. Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83:2698–2700CrossRefGoogle Scholar
  13. Cavalcanti-Adam EA, Micoulet A, Blummel J, Auernheimer J, Kessler H, Spatz JP et al. (2006) Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Euro J Cell Biol 85:219–224CrossRefGoogle Scholar
  14. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE et al. (1997) Geometric control of cell life and death. Science 276:1425–1428CrossRefGoogle Scholar
  15. Chien CB, Pine J (1991) An apparatus for recording synaptic potentials from neuronal cultures using voltage-sensitive fluorescent dyes. J Neurosci Methods 38:93–105CrossRefGoogle Scholar
  16. Choi JW, Lee W, Lee DB, Park CH, Kim JS, Jang YH, Kim Y. et al. (2007) Electrochemical detection of pathogen infection using cell chip. Envion Monit Assess 129:37–42CrossRefGoogle Scholar
  17. Choi JW, Park KW, Lee DB, Lee W, Lee WH et al. (2005) Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonance. Biosens Bioelectron 20:2300–2305CrossRefGoogle Scholar
  18. Connolly P, Clark P, Curtis ASG, Dow JAT, Wilkinson CDW et al. (1990) An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens Bioelectron 5:223–234CrossRefGoogle Scholar
  19. Dalby MJ, Pasqui D, Affrossman S et al. (2004) Cell response to nano-islands produced by polymer demixing: a brief review. IEE Proc -Nanobiotechnol 151:53–61.CrossRefGoogle Scholar
  20. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W et al. (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738CrossRefGoogle Scholar
  21. DeBusschere BD, Kovacs GTA (2001) Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens Bioelectron 16:543–556CrossRefGoogle Scholar
  22. Denyer MCT, Riehle M, Britland ST, Offenhauser A et al. (1998) Preliminary study on the suitability of a pharmacological bio-assay based on cardiac myocytes cultured over microfabricated microelectrode arrays. Med Biol Eng Comput 36: 638–644CrossRefGoogle Scholar
  23. Ehret R, Baumann W, Brischwein M, Schwinde A, Wolf B et al. (1998) On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures. Med Biol Eng Comput 36:365–370CrossRefGoogle Scholar
  24. Elbert DL, Hubbell JA (1996) Surface treatments of polymers for biocompatibility. Annu Rev Mater Sci 26:365–394CrossRefGoogle Scholar
  25. Fields GB, Lauer JL, Dori Y, Forns P, Yu Y-C, Tirrell M et al. (1998) Protein like molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47:143–151CrossRefGoogle Scholar
  26. Folch A, Toner M (2000) Microengineering of cellular interactions. Annu Rev Biomed Eng 2:227–256CrossRefGoogle Scholar
  27. Giancotti FG, Ruoslahti E (1999) Integrin Signaling. Science 285:1028–1033CrossRefGoogle Scholar
  28. Gil GC, Mitchell RJ, Chang ST, Gu MB et al. (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 15:23–30CrossRefGoogle Scholar
  29. Gross GW (1979) Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng 26:273–279CrossRefGoogle Scholar
  30. Gross GW, Rhoades B, Jordan R et al. (1992) Neuronal networks for biochemical sensing. Sens Actu B 6:1–8CrossRefGoogle Scholar
  31. Gross GW, Rhoades BK, Azzazy HME, Wu M-C et al. (1995) The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron 10:553–567CrossRefGoogle Scholar
  32. Gross GW, Williams AN, Lucas JH et al. (1982) Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture. J Neurosci Methods 5:13–22CrossRefGoogle Scholar
  33. Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335CrossRefGoogle Scholar
  34. Gurrath M, Muller G, Kessler H, Aumailley M, Timpl R et al. (1992) Conformation/activity studies of rationally designed potent antiadhesive RGD peptides. Eur J Biochem 210: 911–921CrossRefGoogle Scholar
  35. Hafner F (2000) Cytosensor Microphysiometer: technology and recent applications. Biosens Bioelectron 15:149–158CrossRefGoogle Scholar
  36. Hersel U. Dahmen C, Kessler H et al. (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRefGoogle Scholar
  37. Horbett TA, Lew KR (1994) Residence time effects on monoclonal antibody binding to adsorbed fibrinogen. J Biomater Sci Polym Ed 6:15–33CrossRefGoogle Scholar
  38. Huang SG (2002) Development of a high throughput screening assay for mitochondrial membrane potential in living cells. J Biomol Screen 7:383–389CrossRefGoogle Scholar
  39. Huang Y, Sekhon NS, Borninski J, Chen N, Rubinsky B et al. (2003) Instananeous, quantitative single-cell viability assessment by electrical evaluation of cell membrane integrity with microfabricated devices, Sens Actu A 105: 31–39Google Scholar
  40. Israel DA, Barry WH, Edell DJ, Mark RG et al. (1984) An array of microelectrodes to stimulate and record from cardiac cells in culture. Am J Physiol 247:H669–H674Google Scholar
  41. Ito Y, Kajihara M, Imanishi Y et al. (1991) Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide. J Biomed Mater Res 25:1325–1337CrossRefGoogle Scholar
  42. Ivanov B, Grzesik W, Robey FA et al. (1995) Synthesis and use of a new bromoacetyl-derivatized heterotrifunctional amino acid for conjugation of cyclic RGD-containing peptides derived from human bone sialoprotein. Bioconjug Chem 6:269–277CrossRefGoogle Scholar
  43. Jyoung JY, Hong S, Lee W, Choi JW et al. (2006) Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosens Bioelectron 21:2315–2319CrossRefGoogle Scholar
  44. Kaehler J, Zilla P, Fasol R, Deutsch M, Kadletz M et al. (1989) Precoating substrate and surface configuration determine adherence and spreading of seeded endothelial cells on polytetrafluoroethylene grafts. J Vasc Surg 9:535–541CrossRefGoogle Scholar
  45. Keese CR, Giaever IA (1994) Biosensor that monitors cell morphology with electrical fields. IEEE Eng Med Biol Magazine 13:402–408CrossRefGoogle Scholar
  46. Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosen Bioelectron 18:1015–1021CrossRefGoogle Scholar
  47. Kretschmann E (1971) Die bestimmung optischer konstanten von metallen durch anregung von oberfachenplasmaschwingungen, Zeitschrift fur Physik 241:313–324CrossRefGoogle Scholar
  48. Li JM, Menconi MJ, Wheeler HB, Rohrer MJ, Klassen VA, Ansell JE, Appel MC et al. (1992) Precoating expanded polytetrafluoroethylene grafts alters production of endothelial cell-derived thrombomodulators. J Vasc Surg 15:1010–1017CrossRefGoogle Scholar
  49. Lion N, Rohner TC, Dayon L, Arnaud IL, Damoc E, Youhnovski N, Wu Z-Y, Roussel C, Josserand J, Jensen H, Rossier JS, Przybylski M, Girault HH et al. (2003) Microfluidic systems in proteomics. Electrophoresis 24:3533–3562CrossRefGoogle Scholar
  50. Massia SP, Hubbell JA (1991) An RGD spacing of 440 nm is sufficient for integrin – 3-mediated fibroblast spreading and 140 nm for focal contact fiber formation. J Cell Biol 114:1089–1100CrossRefGoogle Scholar
  51. Mischiati C, Borgatti M, Bianchi N, Rutigliano C, Tomassetti M, Feriotto G, Gambari R (1999) Interaction of the human NF-kappa B p52 transcription factor with DNA-PNA hybrids mimicking the NF-kappa B binding sites of the human immunodeficiency virus type 1 promoter, J Biol Chem 274:33114–33122CrossRefGoogle Scholar
  52. Mistry SK, Keefer EW, Cunningham BA, Edelman GM, Crossin KL et al. (2002) Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. Proc Natl Acad Sci 99:1621–1626CrossRefGoogle Scholar
  53. Miyata T, Conte MS, Trudell LA, Mason D, Whittemore AD, Birinyi LK et al. (1991) Delayed exposure to pulsatile shear stress improves retention of human saphenous vein endothelial cells on seeded ePTFE grafts. J Surg Res 50:485–493CrossRefGoogle Scholar
  54. Neff JA, Caldwell KD, Tresco PA et al. (1998) A novel method for surface modification to promote cell attachment to hydrophobic substrates. J Biomed Mater Res 40:511–519CrossRefGoogle Scholar
  55. Oh BK, Lee W, Lee WH, Choi JW et al. (2003) Nano-scale probe fabrication using self-assembly technique and application to detection of Escherichia coli O157:H7. Biotechnol Bioprocess Eng 8:227–232CrossRefGoogle Scholar
  56. Owicki JC, Bousee LJ, Hafeman DG, Kirk GL, Olson JD, Wada G, Parce JW et al. (1994) The light-addressable potentiometric sensor: principles and biological applications. Annu Rev Biophys Biomol Struct 23:87–113CrossRefGoogle Scholar
  57. Owicki JC, Parce JW (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosen Bioelectron 7:255–272CrossRefGoogle Scholar
  58. Pancrazio JJ, Bey PP Jr, Cuttino DS, Kusel JK, Borkholder DA, Shaffer KM, Kovacs GTA, Stenger DA et al. (1998) Portable cell-based biosensor system for toxin detection. Sens Actu B 53:179–185CrossRefGoogle Scholar
  59. Peterlinz KA, Georgiadis RM (1997) Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J Am Chem Soc 119:3401–3402CrossRefGoogle Scholar
  60. Peterson AW, Wolf LK, Georgiadis RM et al. (2002) Hybridization of mismatched or partially matched DNA at surfaces. J Am Chem Soc 124:14601–14607CrossRefGoogle Scholar
  61. Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods 2:19–31CrossRefGoogle Scholar
  62. Prystay L, Gagne A, Kasila P, Yeh LA, Banks P et al. (2001) Homogeneous cell-based fluorescence polarization assay for the direct detection of cAMP. J Biomol Screen 6:75–82Google Scholar
  63. Quinn JG, O’Neill S, Doyle A, McAtamney C, Diamond D, MacCraith BD, O’Kennedy R et al. (2000) Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions. Anal Biochem 281:135–143CrossRefGoogle Scholar
  64. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–75CrossRefGoogle Scholar
  65. Salamon Z, Macleod HA, Tollin G et al. (1997) Surface Plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Application to biological systems. Biochimica et Biophysica Acta 1331:131–152Google Scholar
  66. Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T et al. (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-γ. Electrophoresis 23:734–739CrossRefGoogle Scholar
  67. Seeger JM, Klingman N (1985) Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts. J Surg Res 38:641–647CrossRefGoogle Scholar
  68. Sentissi JM, Ramberg K, O-Donnell Jr TF, Connolly RJ, Callow AD et al. (1986) The effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts. Surgery 99:337–343Google Scholar
  69. Shliom O, Huang M, Sachais B, Kuo A, Weisel JW, Nagaswami C, Nassar T, Bdeir K, Hiss E, Gawlak S et al. (2000) Novel interactions between urokinase and its receptor. J Biol Chem 275:24304–24312CrossRefGoogle Scholar
  70. Shumaker-Parry JS, Aebersold R, Campbell CT et al. (2004) Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal Chem 76:2071–2082CrossRefGoogle Scholar
  71. Sulyok GAG, Gibson C, Goodman SL, Holzemann G, Wiesner M, Kessler H et al. (2001) Solid-phase synthesis of a nonpeptide RGD mimeticlibrary: New selective – 3 integrin antagonists. J Med Chem 44:1938–1950CrossRefGoogle Scholar
  72. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS et al. (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489CrossRefGoogle Scholar
  73. Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita J-B, Bornens M et al. (2005) The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol 7:947–953CrossRefGoogle Scholar
  74. Thomas CA Jr, Springer PA, Loeb GE, Berwald-Netter Y, Okun LMA et al. (1972) Miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74:61–66CrossRefGoogle Scholar
  75. Thomson GJ, Vohra RK, Carr MH, Walker MG et al. (1991) Adult human endothelial cell seeding using expanded polytetrafluoroethylene vascular grafts: a comparison of four substrates. Surgery 109:20–27Google Scholar
  76. Torisawa YS, Kaya T, Takii Y, Oyamatsu D, Nishizawa M, Matsue T et al. (2003) Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Anal Chem 75:2154–2158CrossRefGoogle Scholar
  77. Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23:677–712CrossRefGoogle Scholar
  78. Vilkner T, Janasek D, Manz A et al. (2004) Micro total analysis systems. Recent developments. Anal Chem 76:3373–3385Google Scholar
  79. Vohra R, Thomson GJ, Carr HM, Sharma H, Walker MG et al. (1991) Comparison of different vascular prostheses and matrices in relation to endothelial seeding. Br J Surg 78:417–420CrossRefGoogle Scholar
  80. Walter N, Selhuber C, Kessler H, Spatz JP et al. (2006) Cellular unbinding forces of initial adhesion processes on nanopatterned surfaces probed with magnetic tweezers. Nanolett 6:398–402Google Scholar
  81. Wei CW, Cheng JY, Huang CT, Yen MH, Young TH et al. (2005) Using a microfluidic device for 1µl DNA microarray hybridization in 500s. Nucleic Acids Res 33:e78CrossRefGoogle Scholar
  82. Wei N, Klee D, Hocker H et al. (2001) Konzept zur bioaktiven Ausr.ustung von Metallimplantatoberf.achen. Biomater 2:81–86Google Scholar
  83. Yin NF et al. (2005) Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem 77:527–533CrossRefGoogle Scholar
  84. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM et al. (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol 23:1294–1301CrossRefGoogle Scholar
  85. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Junhong Min
    • 1
  • Cheol-Heon Yea
    • 2
  • Waleed Ahmed El-Said
    • 3
  • Jeong-Woo Choi
    • 4
  1. 1.College of Bionano technologyKyungwon UniversitySeongnamKorea
  2. 2.Department of Chemical and Bomolecular EngineeringSogang UniversityKorea
  3. 3.Interdisciplenary Program of Integrated BiotechnologySogang UniversityKorea
  4. 4.College of Bionano technologyKyungwon UniversitySeongnamKorea

Personalised recommendations