Skip to main content

Removal of Selected Organic Micropollutants from WWTP Effluent with Powdered Activated Carbon and Retention by Nanofiltration

  • Chapter
Atmospheric and Biological Environmental Monitoring

Abstract

The increasing demand of potable water as well as process water is leading to scarcity of readily available water resources in many regions of the world. In order to preserve fresh water resources waste water reclamation can serve as a promising but technically challenging alternative to conventional water sources. Besides pathogens, organic trace pollutants cause major concerns in reclamation schemes. In this project, the removal of four micropollutants, more specifically bisphenol A, 17α-ethinylestradiol, 5-fluorouracil and cytarabine, from municipal wastewater treatment plant (WWTP) effluent was studied in laboratory scale experiments and in spiking experiments in a pilot plant combining sorption to powdered activated carbon (PAC) and retention by capillary nanofiltration (NF). Laboratory scale experiments evaluating adsorption isotherms and kinetics showed decreased adsorption capacities but increased affinities in the presence of natural organic matter. Spiking experiments showed that the combination of adsorption to PAC and NF retains micropollutants significantly better than direct NF. Retention of lipophilic micropollutants was increased up to 99.9%. Therefore, the PAC/NF process can be considered as an effective way to treat WWTP effluent for reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler A, Steger-Hartmann T et al. (2001) Vorkommen natürlicher und synthetischer östrogener Steroide in Wässern des süd- und mitteldeutschen Raumes (Distribution of Natural and Synthetic Estrogenic Steroid Hormones in Water Samples from Southern and Middle Germany). Acta hydrochim hydrobiol 29(4):227–241.

    Article  Google Scholar 

  • Alaee M, Wenning RJ (2002) The significance of brominated flame retardants in the environment: current understanding, issues and challenges. Chemosphere 46:579–582.

    Article  Google Scholar 

  • Andersen H, Siegrist H et al. (2003) Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 37(18):4021–4026.

    Article  Google Scholar 

  • Bellona C, Drewes JE et al. (2004) Factors affecting the rejection of organic solutes during NF/RO treatment–a literature review. Water Res 38(12):2795–2809.

    Article  Google Scholar 

  • Bilitewski D, Weltin P, Werner P (2002) Endokrin wirksame Substanzen in Abwasser und Klärschlamm–Neueste Ergebnisse aus Wissenschaft und Technik. Beiträge zur Abfallwirtschaft/Altlasten, Band 23 TU Dresden.

    Google Scholar 

  • Brown KH, Schultz IR et al. (2007). Reduced embryonic survival in rainbow trout resulting from paternal exposure to the environmental estrogen 17α-ethynylestradiol during late sexual maturation. Reproduction 134(5):659–666.

    Article  Google Scholar 

  • Byrns G (2001) The fate of xenobiotic organic compounds in wastewater treatment plants. Water Res 35(10):2523–2533.

    Article  Google Scholar 

  • Cooke MD (1976) Antibiotic resistance in coliform and faecal coliform bacteria from natural waters and effluents. NZ J Mar Freshwater Res 10(3):391–397.

    Article  Google Scholar 

  • Crittenden JC, Luft P, Hand DW (1985) Prediction of multicomponent adsorption equilibria in background mixtures of unknown composition. Water Res 19(12):1537–1548.

    Article  Google Scholar 

  • Danielsson LG, Zhang Y-H (1996) Methods for determining n-octanol-water partition constants Trends Anal Chem 15(4):188–196.

    Article  Google Scholar 

  • Ding L, Marinas BJ et al. (2006) Competitive effects of natural organic matter: parametrization and verification of the three-component adsorption model COMPSORB. Environ Sci Technol 40(1):350–356.

    Article  Google Scholar 

  • Dorne J, Skinner L et al. (2007) Human and environmental risk assessment of pharmaceuticals: differences, similarities, lessons from toxicology Anal Bioanal Chem 387(4): 1259–1268.

    Google Scholar 

  • Drewes JE, Heberer T, Reddersen K (2002) Fate of pharmaceuticals during indirect potable use. Water Sci Tech 46(3): 73–80.

    Google Scholar 

  • Ebie K, Li F et al. (2001) Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water. Water Res 35(1):167–179.

    Article  Google Scholar 

  • Fent K (2003) Ecotoxicological problems associated with contaminated sites. Toxicol Lett 1(13).

    Google Scholar 

  • Fuerhacker M, Durauer A et al. (2001) Adsorption isotherms of 17[beta]-estradiol on granular activated carbon (GAC). Chemosphere 44(7):1573–1579.

    Article  Google Scholar 

  • Futselaar H, Schonewille H, van der Meer W (2002) Direct capillary nanofiltration–a new high-grade purification concept. Desalination 145:75–80.

    Article  Google Scholar 

  • Goi D, de Leitenburg C et al. (2004) Catalytic wet oxidation of a mixed liquid waste: Cod an aox abatement. Environ Tech 25(12):1397–1403.

    Article  Google Scholar 

  • Gore AC, Heindel JJ, et al. (2006) Endocrine disruption for endocrinologists (and Others). Endocrinology 147(6):1–3.

    Article  Google Scholar 

  • Graham MR, Summers RS et al. (2000) Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters. Water Res 34(8):2291–2300.

    Article  Google Scholar 

  • Hansch C, Leo A, Hoekman D (1995) Exploring OSAR–Hydrophobic, Electronic and Steric Constants. American Chemistry Society, Washington, D.C.

    Google Scholar 

  • Heberer T, Reddersen K, Mechlinski A (2002) From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci Tech 46(3):81–88.

    Google Scholar 

  • Heberer T, Stan, HJ (1995) Polar environmental contaminants in the aquatic system. Occurrence and identification by GC-MS. GIT Fachz Lab 39(8):718.

    Google Scholar 

  • Hegemann W, Busch K et al. (2002) Einfluss der Verfahrenstechnik auf die Eliminierung ausgewählter Estrogene und Xenoestrogene in Kläranlagen- ein BMBF Verbundprojekt. Wasser–Abwasser 143:422–428.

    Google Scholar 

  • Johnson AC, Jurgens MD et al. (2008) Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study J Hydrol 348(1–2):167–175.

    Google Scholar 

  • Kamiura T, Tajima Y, Nakahara T (1997) Determination of bisphenol A in air. J Environ Chem 7:275–279.

    Google Scholar 

  • Kazner C, Fink G et al. (2007) Removal of organic micropollutants by nanofiltration in combination with adsorption on powdered activated carbon for artificial groundwater recharge with reclaimed wastewater. Proc 5th IWA Micropol & Ecohazard 2007 conference, Frankfurt/Main, 259–265.

    Google Scholar 

  • Knappe DRU, Matsui Y et al. (1998) Predicting the capacity of powdered activated carbon for trace organic compounds in natural waters. Environ Sci Technol 32(11):1694–1698.

    Article  Google Scholar 

  • Koerner W, Bolz U et al. (2000) Input/output of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 40(9–11):1131–1142.

    Article  Google Scholar 

  • Kolpin DW, Furlong ET et al. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: A national reconnaissance. Environ Sci Technol 36(6):1202–1211.

    Article  Google Scholar 

  • Kovalova L, McArdell CS et al. (2009) Challenge of high polarity and low concentrations in analysis of cytostatics and metabolites in wastewater by hydrophilic interaction chromatography/tandem mass spectrometry. Journal of Chromatography 1216(7):1100–1108.

    Article  Google Scholar 

  • Kümmerer K, Steger-Hartmann T et al. (1997) Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and communal sewage. Water Res 31(11):2705–2710.

    Article  Google Scholar 

  • Mahnik SN, Lenz K et al. (2007) Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 66(1): 30–37.

    Article  Google Scholar 

  • Matsui Y, Fukuda Y et al. (2003) Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption. Water Res 37(18):4413–4424.

    Article  Google Scholar 

  • Meier J, Melin T (2005) Wastewater reclamation by the PAC-NF process. Desalination 178:27–40.

    Article  Google Scholar 

  • Meier J, Melin T, Eilers LH (2002) Nanofiltration and adsorption on powdered adsorbent as process combination for the treatment of severely contaminated waste water. Desalination 146:361–366.

    Article  Google Scholar 

  • Pandey S, Musarrat J (1993) Antibiotic resistant coliform bacteria in drinking water. J Environ Biol 14(4):267–274.

    Google Scholar 

  • Petrovic M, Gonzales S, Barcelo D 2003 Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal Chem 22(10):685–696.

    Article  Google Scholar 

  • Qi S, Schideman L et al. (2007) Simplification of the IAST for activated carbon adsorption of trace organic compounds from natural water. Water Res 41(2):440–448.

    Article  Google Scholar 

  • Scheytt T, Grams S et al. (2001) Pharmaceuticals in groundwater: clofibric acid beneath sewage farms south of Berlin, Germany. ACS Sympos Ser 791:84–99.

    Article  Google Scholar 

  • Schwarzenbach RP, Escher BI et al. (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077.

    Article  Google Scholar 

  • Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract. The Lancet 341(8857):1392–1396.

    Article  Google Scholar 

  • Snyder SA, Adham S et al. (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1–3):156–181.

    Article  Google Scholar 

  • Snyder SA, Wert EC et al. (2006) Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone Sci Eng 28(6):445–460.

    Article  Google Scholar 

  • Sontheimer H, Frick R et al. (1985) Adsorptionsverfahren in der Wasseraufbereitung, DVGW-Forschungsstelle am Engler-Bunte-Institut, Karlsruhe.

    Google Scholar 

  • Spengler P, Körner W, Metzger JW (1999) Schwer abbaubare Substanzen mit östrogenartiger Wirkung im Abwasser von kommunalen und industriellen Kläranlagenabläufen. (Hardly degradable substances with estrogenic activity in effluents of municipal and industrial sewage plants). Vom Wasser 93:141–157.

    Google Scholar 

  • Steger-Hartmann T, Kümmerer K et al. (1996) Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by two-step solid phase extraction and gas chromatography and mass spectrometry. Journal of chromatography A 726(1–2):179–184.

    Article  Google Scholar 

  • Steger-Hartmann T, Kümmerer K, et al. (1997) Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotox Environ Safety 36(2):174–179.

    Article  Google Scholar 

  • Stelzer W, Ziegert E, Schneider E (1985) The occurrence of antibiotic-resistant Klebsiellae in wastewater. Zentralbl Mikrobiol 140(4):283–291.

    Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 32:3245–3260.

    Article  Google Scholar 

  • Ternes TA (2007) The occurrence of micopollutants in the aquatic environment: a new challenge for water management. Water Sci Tech 55(12):327–332.

    Article  Google Scholar 

  • Ternes TA, Joss A (eds.) (2006) Human Pharmaceuticals, Hormones and Fragrances: The Challenge of Micropollutants in Urban Water Management. IWA Publishing, London.

    Google Scholar 

  • Ternes TA, Stumpf M et al. (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1–2):81–90.

    Article  Google Scholar 

  • US EPA. (2008) Estimation Programs Interface SuiteTM for Microsoft® Windows, v3.20. United States Environmental Protection Agency, Washington, DC, USA. http://epa.gov/oppt/exposure/pubs/episuite.htm. Accessed 10 April 2008.

    Google Scholar 

  • Vieno N, Harkki MH et al. (2007) Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol 41(14): 5077–5084.

    Article  Google Scholar 

  • von Gunten U (2003) Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487.

    Article  Google Scholar 

  • Webb S, Ternes T et al. (2003) Indirect human exposure to pharmaceuticals via drinking water. Toxicol Lett 142(3): 157–167.

    Article  Google Scholar 

  • Welshons WV, Nagel SC et al. (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147(6):56–69.

    Article  Google Scholar 

  • Welshons WV, Thayer KA, et al. (2003) Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111(8):994–1006.

    Google Scholar 

  • Wenzel A, Küchler T et al. (1998) Konzentrationen östrogen wirkender Substanzen in Umweltmedien (Concentration of estrogenic active substances in the environment). Umweltforschungsplan des Bundesministers für Umwelt Naturschutz und Reaktorsicherheit. Umweltchemikalien/Schadstoffwirkungen. IUCT, Schmallenberg.

    Google Scholar 

  • Wiedemeier TH, Wilson JT et al. (1999) Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater. U.S. Air Force Center for Environmental Excellence, v.1&2, A324248, A324247a, A324247b.

    Google Scholar 

  • Wintgens T, Melin T et al. (2005) The role of membrane processes in municipal wastewater reclamation and reuse. Desalination 178(1–3):1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Dott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lehnberg, K. et al. (2009). Removal of Selected Organic Micropollutants from WWTP Effluent with Powdered Activated Carbon and Retention by Nanofiltration. In: Kim, Y.J., Platt, U., Gu, M.B., Iwahashi, H. (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9674-7_10

Download citation

Publish with us

Policies and ethics