Skip to main content

Data Types and Logical Processing Methods

  • Chapter
  • First Online:
Spatial Modeling Principles in Earth Sciences
  • 1009 Accesses

Abstract

Not only numerical but also linguistic data are necessary in the modeling of earth sciences events. Measurements are sources of numerical data whereas observations lead to linguistic data. Numerical data include randomness and errors but linguistic data are rather fuzzy, which means that there are uncertainties in both data types. Accordingly, the final model results as predictions or estimations include errors that must be confined within ±5% limits in practical applications. Spatial estimations can be obtained either on point basis or on sub-areal basis depending on the refinement of the problem at hand and purpose. In general, longitude (easting), latitude (northing), and regionalized variable (ReV) value at this location are necessary for a complete description and establishment of a point-wise spatial model, where these three values are referred to as triplicate; but in the case of pixel location its size is also necessary, which leads to four variables (quadruple) for the description of ReV. Simple classical triangularization, polygonalization techniques are used in addition to innovative percentage polygon methodology. Droughts are a kind of spatial earth sciences with coverage area that can be modeled by probabilistic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin, J. E., 1971. Calculation of areal depth of precipitation. J. Hydrol. 12, 363–376.

    Article  Google Scholar 

  • Bayraktar, H., Turalioglu, F. S., and Sen, Z., 2005. The estimation of average areal precipitation by percentage weighting polygon method in Southeastern Anatolia Region, Turkey. Atmos. Res. 73, 149–160.

    Article  Google Scholar 

  • Box, G. F. D., and Jenkins, G. M., 1976. Time Series Analysis, Control and Forecasting. Holden Day, San Francisco.

    Google Scholar 

  • Bras, R. L., and Rodriguez-Iturbe, I., 1985. Random Functions and Hydrology. Addison-Wesley Publishing Co., Reading, MA, 599 pp.

    Google Scholar 

  • Bruce, J. P., and Clark, R. H., 1966. Hydrometeorology. Pergamon Press, New York, 319 pp.

    Google Scholar 

  • Chow, V. T., 1964. Handbook of Applied Hydrology. McGraw-Hill, New York.

    Google Scholar 

  • Chu, P. S., and Karz, R.W., 1985. A time-domain approach. Mon. Wea. Rev. 113, 1876–1888.

    Article  Google Scholar 

  • Cramer, H., 1946. Mathematical Methods of Statistics. Princeton University Press, New Jersey, p. 213.

    Google Scholar 

  • Davis, A., 2002. Statistics Data Analysis Geology. John Wiley and Sons, London, 638 pp.

    Google Scholar 

  • Dirichlet, G. L., 1850. Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal für die Reine und Angewandte Mathematik 40, 209–227.

    Article  Google Scholar 

  • Feller, W., 1967. An Introduction to Probability Theory and its Application. John Wiley and Sons, New York, 509 pp.

    Google Scholar 

  • Fisher, R. A., 1912. On an absolute criterion for filtering frequency curves. Messenger Math. 41, 155.

    Google Scholar 

  • Gauss, K. F., 1809. Theory of the motion of the heavenly bodies about the sun in conic section. Dover, New York (1993).

    Google Scholar 

  • Hevesi, J. A., Istok, J. D., and Flint, A. I., 1992. Precipitation estimation in mountainous terrain using multi-variate geostatistics, Part I: Structural analysis. J. Appl. Meteorol. 31, 661–676.

    Article  Google Scholar 

  • Huff, F. A., and Neill, J. C., 1957. Areal representativeness of point rainfall. Trans. Amer. Geophys. Union 38(3), 341–351.

    Google Scholar 

  • Jackson, I. J., 1972. Mean daily rainfall intensity and number of rainy days over Tanzania. Geogr. Ann. A. 54, 369–375.

    Article  Google Scholar 

  • Kedem, B., Chiu. L. S., and Karni, Z., 1990. An analysis of the threshold method for measuring area-average rainfall. J. App. Meteor. 29, 3–20.

    Article  Google Scholar 

  • Kendall, M. G., 1954. Note on the bias in the estimation of autocorrelation. Biometrika 42, 403–404.

    Google Scholar 

  • Koch, S., and Link, R. F., 1971. Statistical Analysis of Geological Data. Dover Publications, New York, 375 pp.

    Google Scholar 

  • Kolmogorov, A. N., 1941. Interpolation and extrapolation von stationaren zufalligen folgen. Bull. Acad. Sci. USSR, Ser. Math. 5, 3–14.

    Google Scholar 

  • Quenouille, M. H., 1956. Notes on bias in estimation. Biometrika 43, 353–360.

    Google Scholar 

  • Schubert, S. D., Saurez, M. J., and Schemm, J. K., 1992. Persistence and predictability in a perfect model: J. Atmos. Sci. 49(5), 256–269.

    Article  Google Scholar 

  • Sen, Z., 1974. Small sample properties of stationary stochastic processe4s and Hurst phenomenon in hydrology. Unpublished Ph. D. Thesis, Imperial College of Science and Technology, University of London, 256 pp.

    Google Scholar 

  • Sen, Z., 1980. Regional drought and flood frequency analysis: theoretical considerations. J. Hydrol. 46, 265–279.

    Article  Google Scholar 

  • Sen, Z., 1998a. Small sample estimation of the variance of time-averages in climatic time series. Int. J. Climatol. 18, 1725–1732.

    Google Scholar 

  • Sen, Z., 1998b. Average areal precipitation by percentage weighted polygon method. ASCE J. Hydrol. Eng. 3(1), 69–76.

    Google Scholar 

  • Sen, Z., 2002. Istatistik Veri Isleme Yöntemleri (Hidroloji ve Meteoroloji) (Statistical Data Treatment Methods – Hydrology and Meteorology). Su Vakfi yayinlari, 243 sayfa (in Turkish).

    Google Scholar 

  • Sen, Z., 2008. Kuraklik Afet ve Modern Modelleme Yontemleri (Drought Disaster and Modern Modeling Methods). Turkish Water Foundation (in Turkish).

    Google Scholar 

  • Stout, G. E., 1960. Studies of severe rainstorms in Illinois. J. Hydraul. Div. Proc. ASCE, HY4, 129–146.

    Google Scholar 

  • Summer, G., 1988. Precipitation Process and Analysis. John Wiley and Sons, New York, 455 pp.

    Google Scholar 

  • Tabios, G. O. III, and Salas, J. D., 1985. A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour. Bull. 21, 365–380.

    Google Scholar 

  • Tase, N., 1976. Area-deficit-intensity characteristics of droughts. Hydrology Paper 87, Colorado State University, Fort Collins.

    Google Scholar 

  • Tase, N., and Yevjevich, Y., 1978. Effects of size and shape of a region on drought coverage. Hydrol. Sci. Bull. 23(2), 203–213.

    Article  Google Scholar 

  • Thiessen, A. H., 1912. Precipitation averages for large areas. Mon. Wea. Rev. 39, 1082–1084.

    Google Scholar 

  • Voronoi, G., 1907. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133, 97–178.

    Google Scholar 

  • Wiesner, C. J., 1970. Hydrometeorology. Chapman and Hall Ltd., London, 232 pp.

    Google Scholar 

  • Wiener, N., 1942. The extrapolation, interpolation and smoothing of stationary time series. OSRD 370, Report to the Services 19, Research Project DIC-6037, MIT.

    Google Scholar 

  • Wiener, N., 1949. The Extrapolation, Interpolation and Smoothing of Stationary Time Series. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Wilson, J. W., and Atwater, M. A., 1972. Storm rainfall variability over Connecticut. J. Geophys. Res. 77(21), 3950–3956.

    Article  Google Scholar 

  • Zadeh, L. A., 1965. Fuzzy sets. Information Control 8, 338–353.

    Article  Google Scholar 

  • Zadeh, L.A., 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man. Cybern. 3, 28–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekai Sen .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sen, Z. (2009). Data Types and Logical Processing Methods. In: Spatial Modeling Principles in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9672-3_2

Download citation

Publish with us

Policies and ethics