Skip to main content

Power Laws in Urban Supply Networks, Social Systems, and Dense Pedestrian Crowds

  • Chapter

Part of the book series: Methodos Series ((METH,volume 7))

The classical view of the spatio-temporal evolution of cities in developed countries is that urban spaces are the result of (centralized) urban planning. After the advent of complex systems’ theory, however, people have started to interpret city structures as a result of self-organization processes. In fact, although the dynamics of urban agglomerations is a consequence of many human decisions, these are often guided by optimization goals, requirements, constraints, or boundary conditions (such as topographic ones). Therefore, it appears promising to view urban planning decisions as results of the existing structures and upcoming ones (e.g. when a new freeway will lead close by in the near future). Within such an approach, it would not be surprising anymore if urban evolution could be understood as a result of self-organization (Batty & Longley, 1994; Frankhauser, 1994; Schweitzer, 1997).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamic L. A., & Adar, E. (2003). Friends and neighbors on the web, Social Networks, 25(3), 211–230.

    Article  Google Scholar 

  • Albert, R., & Barabási, A. -L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.

    Article  Google Scholar 

  • Baddeley, A. 1994. The magical number 7 – still magic after all these years. Psychological Review, 101(2), 353–356.

    Article  Google Scholar 

  • Bak, P., Christensen, K., Danon, L., & Scanlon, T. (2002). Unified scaling law for earthquakes. Physical Review Letters, 88, Article number 178501.

    Google Scholar 

  • Batty, M., & Longley, P. (1994). Fractal cities: A geometry of form and function. London, UK: Academic Press.

    Google Scholar 

  • Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., & West, G. B. (2007). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences, 104(17), 7301–7306.

    Article  Google Scholar 

  • Brandes, U., & Erlebach, T. (Eds.). (2005). Networks analysis. Berlin, Germany: Springer.

    Google Scholar 

  • Brown, J. H., & West, G. B. (2000). Scaling in biology. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Buhl, J., Gautrais, J., Reeves, N., Solé, R. V., Valverde, S., et al. (2006). Topological patterns in street networks of self-organized urban settlements. The European Physical Journal B, 49, 513–522.

    Article  Google Scholar 

  • Cates, M. E., Wittmer, J. P., Bouchaud, J. P., & Claudin, P. (1998). Jamming, force chains, and fragile matter. Physical Review Letters, 81(9), 1841–1844.

    Article  Google Scholar 

  • } Chen, K. -Y., Fine, L. R., & Huberman, B. A. (2003). Predicting the future. Information Systems Frontiers, 5, 47–61.

    Article  Google Scholar 

  • Christaller, W. (1980). Die zentralen Orte in Süddeutschland (3rd ed.). Darmstadt, Germany: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Costa, L. da F., & da Rocha, L. E. C. (2006). A generalized approach to complex networks. The European Physical Journal B, 50, 237–242.

    Google Scholar 

  • Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 73(3) 036125–036129.

    Google Scholar 

  • Enquist, B. J., Brown, J. H., & West, G. B. (1998). Allometric scaling of plant energetics and population density. Nature 395, 163–165.

    Article  Google Scholar 

  • Frankhauser, P. (1994). La fractalité des structrures urbaines. Paris, France: Anthropos.

    Google Scholar 

  • } Fruin, J. J. (1993). The causes and prevention of crowd disasters. In R. A. Smith, & J. F. Dickie (Eds.), Engineering for crowd safety (pp 99–108). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Gabaix, X. (1999). Zipf,s law for cities: An explanation. Quarterly Journal of Economics, 114(3), 739–767.

    Article  Google Scholar 

  • Gastner, M., & Newman, M. (2006). The spatial structure of networks. The European Physical Journal B, 49, 247–252.

    Article  Google Scholar 

  • Gautrais, J., Theraulaz, G., Deneubourg, J. -L., & Anderson, C. (2002). Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology, 215, 363–373.

    Article  Google Scholar 

  • Gibrat, R. (1931). Les Inégalités Economiques. Paris, France: Librairie du Recueil Sirey.

    Google Scholar 

  • Helbing, D., Ammoser, H., & Kühnert, C. (2006) Information flows in hierarchical networks and the capability of organizations to successfully respond to failures, crises, and disasters. Physica A – Statistical Mechanics and its Applications, 363(1), 141–150.

    Article  Google Scholar 

  • } Helbing, D., Johansson, A., Mathiesen, J., Jensen, M. H., & Hansen, A. (2006). Analytical approach to continuous and intermittent bottleneck flows. Physical Review Letters, 97, Article number 168001.

    Google Scholar 

  • Helbing, D., Johansson, A., & Al-Abideen, H. Z. (2007). The dynamics of crowd disasters: an empirical study. Physical Review E, 75, Article number 046109, part 2.

    Google Scholar 

  • HoĤyst, J. A., Sienkiewicz, J., Fronczak, A., & Suchecki, K. (2005). Scaling of distances in correlated complex networks. Physica A – Statistical Mechanics and its Applications, 351, 167–174.

    Article  Google Scholar 

  • Huberman, B. A., & Loch, C. H. (1996). Collaboration, motivation and the size of organizations. Journal of Organizational Computing, 6, 109–130.

    Article  Google Scholar 

  • Jiang, B., & Claramunt, C. (2004). A structural approach to the model generalization of an urban street network. Geoinformatica, 8(2), 157–171.

    Article  Google Scholar 

  • Johnson, P. A., & Jiz, X. (2005). Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature, 437, 871–874.

    Article  Google Scholar 

  • Külbl, R., & Helbing, D. (2003). Energy laws in human travel behaviour. New Journal of Physics, 5, Article number 48.

    Google Scholar 

  • Kühnert, C., Helbing, D., & West, G. B. (2006). Scaling laws in urban supply networks. Physica A – Statistical Mechanics and its Applications, 363, 96–103.

    Article  Google Scholar 

  • Lämmer, S., Gehlsen, B., & Helbing, D. (2006). Scaling laws in the spatial structure of urban road networks. Physica A – Statistical Mechanics and its Applications, 363, 89–95.

    Article  Google Scholar 

  • Levinson, D., & Yerra, B. (2006). Self-organization of surface transportation networks. Transportation Science 40(2), 179–188.

    Article  Google Scholar 

  • Makse, H.A., Havlin, S., & Stanley, H.E. (1995). Modeling urban-growth patterns. Nature, 377, 608–612.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number 7, plus or minus 2 – some limits on our capacity for processing information. The Psychological Review, 63, 81–97.

    Article  Google Scholar 

  • Newman, M. E. J. (2002). Assortative mixing in networks. Physical Review Letters, 89, Article number 208701.

    Google Scholar 

  • Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: a primal approach. Environment and Planning B – Planning and Design, 33(5), 705–725.

    Article  Google Scholar 

  • Pumain, D., Paulus, F., Vacchiani, C., & Lobo, J. (2006). An evolutionary theory for interpreting urban scaling laws. Cybergeo, 343, 20p.

    Google Scholar 

  • Radjai, F., & Roux, S. (2002). Turbulentlike fluctuations in quasistatic flow of granular media. Physical Review Letters, 89(6), Article number 064302.

    Google Scholar 

  • Schweitzer, F. (Ed.). (1997). Self-organization of complex structures: From individual to collective dynamics. London, UK: Gordon and Breach.

    Google Scholar 

  • Schweitzer, F. (2003). Brownian agents and active particles. Berlin, Germany: Springer.

    Google Scholar 

  • Simon, H. (1955). On a class of skew distribution functions. Biometri ka, 42(3–4), 425–440.

    Google Scholar 

  • } Steindl, J. (1965). Random processes and the growth of firms. New York, NY: Hafner.

    Google Scholar 

  • Strumsky, D., Lobo, J., & Fleming, L. (2005). Metropolitan patenting, inventor agglomeration and social networks: a tale of two effects. Santa Fe Institute Working Paper, 05-02-004.

    Google Scholar 

  • Sutton, J. (1997). Gibrat’s legacy. Journal of Economics Literature, 35(1), 40–59.

    Google Scholar 

  • Tubbs, S. L. (2003). A systems approach to small group interaction. Boston, MA: McGraw-Hill.

    Google Scholar 

  • Ulschak, F. L. (1981). Small group problem solving: An aid to organizational effectiveness. Cambridge, MA: Addison-Wesley.

    Google Scholar 

  • West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.

    Article  Google Scholar 

  • Zipf, G. K. (1949). Human behaviour and the principle of least effort: An introduction to human ecology. (1st ed.). Cambridge, MA: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Helbing, D. et al. (2009). Power Laws in Urban Supply Networks, Social Systems, and Dense Pedestrian Crowds. In: Lane, D., Pumain, D., van der Leeuw, S.E., West, G. (eds) Complexity Perspectives in Innovation and Social Change. Methodos Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9663-1_17

Download citation

Publish with us

Policies and ethics