Skip to main content

Molecular Mechanisms of the Interaction Between Nematode-Trapping Fungi and Nematodes: Lessons From Genomics

  • Chapter
  • First Online:

Part of the book series: Progress in Biological Control ((PIBC,volume 11))

Abstract

Soil contains a diverse range of fungi that are parasites on nematodes. These fungi include the nematode-trapping fungi that are dependent on specific hyphal structures on or in which nematodes can be trapped mechanically or by adhesion. The interests of studying these fungi come from their potential use as biological control agents against plant- and animal-parasitic nematodes. Studies on the molecular mechanisms of the interaction between nematode-trapping fungi and nematodes were initiated already in the 1950s. Recently, the infection process, including the differentiation of trap cells and the penetration and digestion of nematodes, has been examined using tools of genomics and functional genomics. The results from these studies are reviewed. We discuss how genomic approaches can provide insights into the infection process, the environmental factors that influence survival and activity in soils, and the mechanisms that could account for the variation in parasitic activity within and between species of nematode-trapping fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Åhman J, Ek B, Rask L et al (1996) Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology 142:1605–1616

    Article  PubMed  Google Scholar 

  • Åhman J, Johansson T, Olsson M et al (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  PubMed  Google Scholar 

  • Ahrén D, Ursing BM, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18 S rDNA sequences. FEMS Microbiol Lett 158:179–184

    Article  PubMed  Google Scholar 

  • Ahrén D, Tholander M, Fekete C et al (2005) Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 151:789–803

    Article  PubMed  Google Scholar 

  • Anderson IC, Cairney JW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Hu G, Screen SE et al (2004) Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169

    Article  PubMed  CAS  Google Scholar 

  • Balogh J, Tunlid A, Rosen S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39:128–135

    Article  PubMed  CAS  Google Scholar 

  • Barron GL (1977) The nematode-destroying fungi. Lancester Press, Guelph

    Google Scholar 

  • Barron GL (1992) Lignolytic and cellulolytic fungi as predators and parasites. In: Carroll GC, Wicklow DT (eds) The fungal community. Marcel Dekker, New York, pp 311–326

    Google Scholar 

  • Birck C, Damian L, Marty-Detraves C et al (2004) A new lectin family with structure similarity to actinoporins revealed by the crystal structure of Xerocomus chrysenteron lectin XCL. J Mol Biol 344:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Blackwood CB, Waldrop MP, Zak DR et al (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9:1306–1316

    Article  PubMed  CAS  Google Scholar 

  • Bordallo JJ, Lopez-Llorca LV, Jansson H-B et al (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499

    Article  Google Scholar 

  • Borrebaeck CA, Mattiasson B, Nordbring-Hertz B (1984) Isolation and partial characterization of a carbohydrate-binding protein from a nematode-trapping fungus. J Bacteriol 159:53–56

    PubMed  CAS  Google Scholar 

  • Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15

    Article  PubMed  CAS  Google Scholar 

  • Carrizo ME, Capaldi S, Perduca M et al (2005) The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J Biol Chem 280:10614–10623

    Article  PubMed  CAS  Google Scholar 

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    Article  PubMed  CAS  Google Scholar 

  • Couillault C, Pujol N, Reboul J et al (2004) TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5:488–494

    Article  PubMed  CAS  Google Scholar 

  • Cox GN, Kusch M, Edgar RS (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 90:7–17

    Article  PubMed  CAS  Google Scholar 

  • Dackman C, Nordbring-Hertz B (1992) Conidial traps: a new survival structure of the nematode-trapping fungus Arthrobotrys oligospora. Mycol Res 96:194–198

    Article  Google Scholar 

  • Davies KG (2005) Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Adv Appl Microbiol 57:53–78

    Article  PubMed  CAS  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B et al (1999) Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    Article  PubMed  CAS  Google Scholar 

  • Dijksterhuis J, Veenhuis M, Harder W et al (1994) Nematophagous fungi: physiological aspects and structure-function relationships. Adv Microb Physiol 36:111–143

    Article  PubMed  CAS  Google Scholar 

  • Drechsler C (1941) Predacious fungi. Biol Rev Camb Philos Soc 16:265–290

    Article  Google Scholar 

  • Dudddington CL (1955) Fungi that attack microscopic animals. Bot Rev 7:377–439

    Article  Google Scholar 

  • Fekete C, Tholander M, Rajashekar B et al (2008) Paralysis of nematodes: shifts in the transcriptome of the nematode-trapping fungus Monacrosporium haptotylum during infection of Caenorhabditis elegans. Environ Microbiol 10:364–375

    Article  PubMed  CAS  Google Scholar 

  • Ferea TL, Botstein D, Brown PO et al (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci USA 96:9721–9726

    Article  PubMed  CAS  Google Scholar 

  • Friman E (1993) Isolation of trap cells from the nematode-trapping fungus Dactylaria candida. Exp Mycol 17:368–370

    Article  Google Scholar 

  • Friman E, Olsson S, Nordbring-Hertz B (1985) Heavy-trap formation by Arthrobotrys oligospora in liquid culture. FEMS Microbiol Ecol 31:17–21

    Article  Google Scholar 

  • Gaspard JT, Jaffe BA, Ferris H (1990) Meloidogyne incognita survival in soil infested with Paecilomyces lilacinus and Verticillium chlamydosporium. J Nematol 22:176–181

    PubMed  CAS  Google Scholar 

  • Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7:741–751

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn G, Scholler M (1999) A reevaluation of predatory orbiliaceous fungi. I: Phylogentic analysis using rDNA sequence data. Sydowia 51:27–48

    Google Scholar 

  • Hu G, Liu I, Sham A et al (2008) Comparative hybridization reveals extensive genome variation in the AIDS-associated pathogen Cryptococcus neoformans. Genome Biol 9:R41

    Article  PubMed  Google Scholar 

  • Iijima N, Yoshino H, Ten LC et al (2002) Two genes encoding fruit body lectins of Pleurotus cornucopiae: sequence similarity with the lectin of a nematode-trapping fungus. Biosci Biotechnol Biochem 66:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Jansson H-B, Lopez-Llorca LV (2004) Control of nematodes by fungi. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New York, pp 205–215

    Google Scholar 

  • Jin X, Ming-He M, Xiao-Wei H et al (2005) Improvement on genetic transformation in the nematode-trapping fungus Arthrobotrys oligospora and its quantification on dung samples. Mycopathologia 159:533–538

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60

    Article  PubMed  CAS  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    Article  PubMed  CAS  Google Scholar 

  • Kerry BR (2001) Exploitation of the nematophagous fungus Verticillium chlamydosporium Goddar for the biological control of root-knot nematodes (Meloidogyne spp.). In: Butt TM, Jackson C, Magan M (eds) Fungi as biocontrol agents; progress, problems and potential. CABI Publishing, Wallingford, pp 155–168

    Chapter  Google Scholar 

  • Khan A, Williams KL, Soon J et al (2008) Proteomic analysis of the knob-producing nematode-trapping fungus Monacrosporium lysipagum. Mycol Res 112:1447–1452

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 28:118–121

    Article  PubMed  CAS  Google Scholar 

  • Larsen M (2000) Prospects for controlling animal parasitic nematodes by predacious micro fungi. Parasitology 120(Suppl):S121–S131

    Article  PubMed  Google Scholar 

  • Le Quéré A, Schützendübel A, Rajashekar B et al (2004) Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungus. Mol Ecol 13:3809–3819

    Article  PubMed  Google Scholar 

  • Leonidas DD, Swamy BM, Hatzopoulos GN et al (2007) Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin. J Mol Biol 368:1145–1161

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hyde KD, Jeewon R et al (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Linford MB (1937) Stimulated activity of natural enemies of nematodes. Science 85:123–124

    Article  PubMed  CAS  Google Scholar 

  • Liou GY, Tzean SS (1997) Phylogeny of the genus Arthrobotrys and allied nematode-trapping-fungi based on rDNA sequences. Mycologia 89:876–884

    Article  CAS  Google Scholar 

  • Mallo GV, Kurz CL, Couillault C et al (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214

    Article  PubMed  CAS  Google Scholar 

  • McKew BA, Coulon F, Yakimov MM et al (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571

    Article  PubMed  CAS  Google Scholar 

  • Miura F, Kawaguchi N, Sese J et al (2006) A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci USA 103:17846–17851

    Google Scholar 

  • Morton CO, Hirsch PR, Kerry BR (2004) Infection of plant-parasitic nematodes by nematophagous fungi - a review of the application of molecular biology to understand infectionprocesses and to improve biological control. Nematology 6:161–170

    Article  CAS  Google Scholar 

  • Mylonakis E, Ausubel FM, Perfect JR et al (2002) Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci USA 99:15675–15680

    Article  PubMed  CAS  Google Scholar 

  • Nicolaisen MH, Baelum J, Jacobsen CS et al (2008) Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Environ Microbiol 10:571–579

    Article  PubMed  CAS  Google Scholar 

  • Norbring-Hertz B, Jansson H-B, Persson Y et al (1995) Nematophagous fungi. Film C1851. Institut für den Wissenschafltichen Film, Göttingen

    Google Scholar 

  • Nordbring-Hertz B (1973) Peptide induced morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol Plant 29:223–233

    Article  CAS  Google Scholar 

  • Nordbring-Hertz B (1977) Nematode-induced morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Nematologica 23:443–451

    Article  Google Scholar 

  • Nordbring-Hertz B, Brinck B (1974) Quantitative characterization of some peptides inducing morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol Plant 31:59–63

    Article  CAS  Google Scholar 

  • Nordbring-Hertz B, Chet I (1988) Fungal lectins and agglutinins. In: Mirelman D (ed) Microbial lectins and agglutinins: properties and biological activity. Wiley, New York, pp 393–408

    Google Scholar 

  • Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature 281:477–479

    Article  CAS  Google Scholar 

  • O’Rourke D, Baban D, Demidova M et al (2006) Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16:1005–1016

    Article  PubMed  Google Scholar 

  • Olthof THA, Estey RH (1963) A nemtatotoxin produced by the nematode-trapping fungus Arthrobotrys oligospora. Nature 197:514–525

    Article  Google Scholar 

  • Peay KG, Kennedy PG, Bruns T (2008) Fungal comminity ecology: a hybrid beast with a molecular master. BioScience 58:799–810

    Article  Google Scholar 

  • Peng T, Orsborn KI, Orbach MJ et al (1999) Proline-rich vaccine candidate antigen of Coccidioides immitis: conservation among isolates and differential expression with spherule maturation. J Infect Dis 179:518–521

    Article  PubMed  CAS  Google Scholar 

  • Persmark L, Nordbring-Hertz B (1997) Conidial trap formation of nematode-trapping fungi in soil and soil extracts. FEMS Microbiol Ecol 22:313–323

    Article  CAS  Google Scholar 

  • Persson Y, Veenhuis M, Nordbring-Hertz B (1985) Morphogenesis and significance of hyphal coling by nemtaode-trapping fungi in mycoparasitic relationships. FEMS Microbiol Ecol 31:283–291

    Article  Google Scholar 

  • Pramer D, Kuyama S (1963) Symposium on biochemical bases of morphogenesis in fungi II: Nemin and the nematode-trapping fungi. Bacteriol Rev 27:282–292

    PubMed  CAS  Google Scholar 

  • Pramer D, Stoll NR (1959) Nemin: a morphogenetic substance causing trap formation by predaceous fungi. Science 129:966–967

    Article  PubMed  CAS  Google Scholar 

  • Premachandran D, Pramer D (1984) Role of N-Acetylgalactosamine-specific protein in trapping of nematodes by Arthrobotrys oligospora. Appl Environ Microbiol 47:1358–1359

    PubMed  CAS  Google Scholar 

  • Rauyaree P, Choi W, Fang E et al (2004) Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol Plant Pathol 2:347–354

    Article  Google Scholar 

  • Rep M (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol Lett 253:19–27

    Article  PubMed  CAS  Google Scholar 

  • Rosén S, Ek B, Rask L et al (1992) Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 138:2663–2672

    PubMed  Google Scholar 

  • Rosén S, Bergstrom J, Karlsson KA et al (1996a) A multispecific saline-soluble lectin from the parasitic fungus Arthrobotrys oligospora. Similarities in the binding specificities compared with a lectin from the mushroom agaricus bisporus. Eur J Biochem 238:830–837

    Article  PubMed  Google Scholar 

  • Rosén S, Kata M, Persson Y et al (1996b) Molecular characterization of a saline-soluble lectin from a parasitic fungus Extensive sequence similarities between fungal lectins. Eur J Biochem 238:822–829

    Article  PubMed  Google Scholar 

  • Rosén S, Sjollema K, Veenhuis M et al (1997) A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiology 143:2593–2604

    Article  Google Scholar 

  • Schenck S, Chase T, Rosenzweig WD et al (1980) Collagenase production by nematode-trapping fungi. Appl Environ Microbiol 40:567–570

    PubMed  CAS  Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62R

    Article  PubMed  CAS  Google Scholar 

  • Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  • Sifri CD, Begun J, Ausubel FM (2005) The worm has turned–microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 13:119–127

    Article  PubMed  CAS  Google Scholar 

  • Smith ME, Jaffee BA (2008) PCR Primers with Enhanced Specificity for Nematode-Trapping Fungi (Orbiliales). Microb Ecol 58:117–128

    Article  PubMed  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  PubMed  CAS  Google Scholar 

  • Stadler M, Sterner O (1993) Linoleic acid - The nematicidal principle of several nematophagous fungi and its production in trap-forming submerged culture. Arch Microbiol 160:401–405

    Article  CAS  Google Scholar 

  • Stein LD, Bao Z, Blasiar D et al (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:E45

    Article  PubMed  Google Scholar 

  • Stirling GR, Smith LJ (1998) Filed tests of formulated products containing either Verticillium chlamydoposporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biol Control 11:231–239

    Article  Google Scholar 

  • Swamy BM, Bhat AG, Hegde GV et al (2004) Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 14:951–957

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Choi W, Mitchell TK et al (2004) Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Mol Plant Pathol 4:337–346

    Article  Google Scholar 

  • Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718

    Article  PubMed  CAS  Google Scholar 

  • Thomas SW, Glaring MA, Rasmussen SW et al (2002) Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE). Mol Plant Microbe Interact 15:847–856

    Article  PubMed  CAS  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    Article  PubMed  CAS  Google Scholar 

  • Tunlid A, Ahrén D (2001) Application of genomics to the improvement of nematode-trapping fungi. In: Vurro M, Gressel J, Butt T et al (eds) Enhancing biocontrol agents and handling risks. Ios Press, Amsterdam, pp 193–200

    Google Scholar 

  • Tunlid A, Jansson S (1991) Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl Environ Microbiol 57:2868–2872

    PubMed  CAS  Google Scholar 

  • Tunlid A, Talbot NJ (2002) Genomics of parasitic and symbiotic fungi. Curr Opin Microbiol 5:513–519

    Article  PubMed  CAS  Google Scholar 

  • Tunlid A, Rosen S, Ek B et al (1994) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695

    Article  PubMed  Google Scholar 

  • Tunlid A, Åhman J, Oliver RP (1999) Transformation of the nematode-trapping fungus Arthrobotrys oligospora. FEMS Microbiol Lett 173:111–116

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    Google Scholar 

  • Wright DP, Johansson T, Le Quéré A et al (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula Roth.) seedlings in soil microcosms. New Phytol 167:579–596

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Tian B, Liang L et al (2007a) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yang E, An Z et al (2007b) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci USA 104:8379–8384

    Article  PubMed  CAS  Google Scholar 

  • Yu LG, Andrews N, Weldon M et al (2002) An N-terminal truncated form of Orp150 is a cytoplasmic ligand for the anti-proliferative mushroom Agaricus bisporus lectin and is required for nuclear localization sequence-dependent nuclear protein import. J Biol Chem 277:24538–24545

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work done in the laboratory of the authors has been supported by grants from the Swedish Research Council (VR) and the Swedish Research Council for Agricultural Sciences and Spatial Planning (FORMAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Tunlid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tunlid, A., Ahrén, D. (2011). Molecular Mechanisms of the Interaction Between Nematode-Trapping Fungi and Nematodes: Lessons From Genomics. In: Davies, K., Spiegel, Y. (eds) Biological Control of Plant-Parasitic Nematodes:. Progress in Biological Control, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_6

Download citation

Publish with us

Policies and ethics